

In eigener Sache

Die Firma SBE System Bau Elemente Vertriebs GmbH vertreibt seit 1984 die ZETA- Pfetten und Wandriegel für den Hallenbau. Seit dieser Zeit haben wir uns als Partner des Hallenbaus einen Namen gemacht. Viele Gründe sprechen für eine Zusammenarbeit mit uns und den Einsatz unserer Produkte:

- kürzeste Lieferzeiten, 10 -12 Arbeitstage
- kurzfristige Angebote
- Wahl des günstigsten Profils durch SBE
- Statik im Preis enthalten
- einbaufertig geliefert und gelocht
- Positionierung nach Vorgabe
- fachliche Kompetenz
- Flexibilität

Sprechen Sie mit uns. Fragen Sie bei uns an.

Ihr Ansprechpartner

SBE

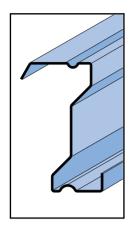
System Bau Elemente Vertriebs GmbH Offenbachstr. 1 81241 München Tel. +49 (0)89 89 60 84 0

E-Mail: info@sbe-zeta.de Web: www.sbe-zeta.de

Einige Worte zum Produkt:

ZETA-Profile sind Bauelemente für Unterkonstruktionen von Dach- und Wandelementen im Industriebau. Für frei wählbare Binderabstände bis 12 m werden die Profile einbaufertig abgelängt und gelocht geliefert. ZETA-Pfettensysteme sind das Ergebnis eines Zusammenspiels von kontinuierlicher Entwicklung und langjähriger Erfahrung.

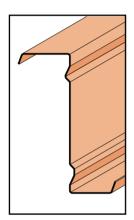
Die Profilform berücksichtigt


- einen wirtschaftlichen Materialeinsatz,
- die Möglichkeit, durch Ineinandernesten der Profile eine optimale gegenseitige Überlappung der Pfetten zu erzielen und dadurch auch an Transportraum zu sparen,
- die Forderung die Dachabtriebskraft durch möglichst geringe Abweichung der Hauptträgheitsachse von der Lotrechten, insbesondere bei Dachneigungen zwischen 5° und 10°, klein zu halten.

Weiter werden allgemeine statische Erkenntnisse zur Anordnung der Pfetten in Form der folgenden Standardsysteme umgesetzt:

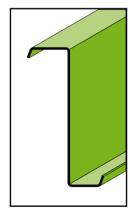
- Überlappsystem,
- Zweifeldsystem,
- verlaschtes Zweifeldsystem,
- gelaschtes Einfeldsystem,
- verlaschtes Einfeldsystem,
- Einfeldsystem.

Die endgültige Festlegung aller Dimensionen des Profils und der Anordnung beruht auf theoretischen Untersuchungen, Berechnungen und Großversuchen. Diese bilden auch die Grundlage für eine Typenprüfung mit Lasttabellen auf Basis des EC3. Auf die in dieser Typenprüfung festgelegten Regeln für Bemessung, Anordnung und Montage des ZETA-Pfettensystems und den Erfahrungen aus einer früheren bauaufsichtlichen Zulassung baut dieses Handbuch auf.


Produktübersicht

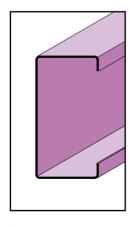
ZETA

Die komplexe und ausgereifte Form dieser Pfette verspricht eine hohe Wirtschaftlichkeit und vielseitige Einsatzmöglichkeiten.


Einsetzbar für Hallenkonstruktionen mit Spannweiten bis 8,5 m. Erhältlich in den Bauhöhen 125 mm, 150 mm, 175 mm und 200 mm.

ZETA II

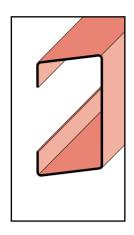
Die ZETA II Pfette verfügt über Merkmale der ZETA - Pfette und der geraden ZED – Pfette. Die Versteifungssicken ermöglichen eine hohe Belastbarkeit bei gleichzeitig äußerst geringem Eigengewicht.


Einsetzbar für größere Hallenkonstruktionen mit variabler Spannweite oder bei großer Belastung. Erhältlich in den Bauhöhen 225 mm, 245 mm, 265 mm und 285 mm.

ZED

Die gerade ZED – Pfette erlaubt einfache und wirkungsvolle Konstruktionen. Die Bauform dieses Systems ist besonders für kompliziertere Dachformen geeignet. Auch bei Wandkonstruktionen kommt das ZED - Profil zum Einsatz.

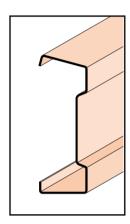
Einsetzbar für Spannweiten bis zu 10 m, in Sonderfällen bis 12 m. Erhältlich in den Bauhöhen 240 mm und 300 mm.


C-Profile

Die klassische Form des Wandriegels. Seine Anwendung reicht von Wandriegeln in horizontaler und vertikaler Einbaulage, als Abstützung, als Fensterrahmen oder als Auswechslung, bis hin zu Tür- und Torstielen.

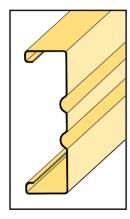
Erhältlich in den Bauhöhen 105 mm, 140 mm, 160 mm, 180 mm, 200 mm und 270 mm, die Flanschbreite ist einheitlich 90 mm.

Als CN-Profil mit Bauhöhen von 140 mm, 150 mm, 160 mm, 180 mm und 200 mm, Flanschbreite 90 mm und zwei 45 mm Flanschen.


Zusätzlich erhältlich als CS-Profil mit schmaler Flanschbreite von 44 mm und in Höhen zwischen 70 mm und 340 mm.

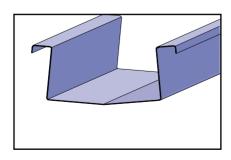
Traufenprofile

Die Traufenprofile vereinen die Funktion eines Pfetten- und Wandriegelstranges in einem Profil.


Erhältlich für Dachneigungen bis 20°, für Bauhöhen von ZETA 150 bis ZETA II 285 und Wandriegelbreiten zwischen 105 mm und 140 mm.

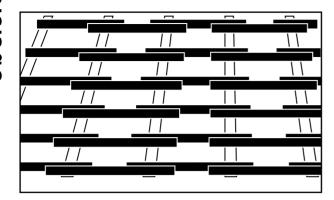
Traufenprofil "Eaves Beam"

Dieses gerollte, nach innen geöffnete Profil ist eine weitere Möglichkeit für ein Traufenprofil.


Erhältlich für Dachneigungen bis 15°, in den Bauhöhen 160 mm und 240 mm, die Flanschbreite ist 90 mm.

Vielzweckträger "SB-Täger"

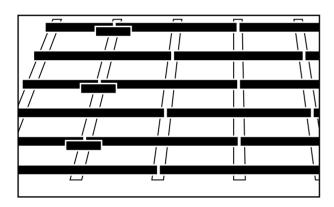
Der SB-Träger findet seine Anwendung als Wandriegel für große Stützweiten oder als Träger für Bühnen und Plattformen. Durch den Einsatz von speziellen Zubehörteilen und Verbindungselementen ist die Erstellung ganzer Leichtbauhallen mit diesen Profilen möglich.


Erhältlich in den Bauhöhen 220 mm, 250 mm und 300 mm.

Sonderprofile

Sie benötigen ein speziell nach Ihren Vorstellungen angepasstes und gefertigtes Profil? Wir haben in unserem Werk die Möglichkeit Kantteile bis 12 m Länge nach Ihren Angaben zu fertigen. Zur Klärung der Kontur sprechen Sie bitte mit unserem technischem Büro.

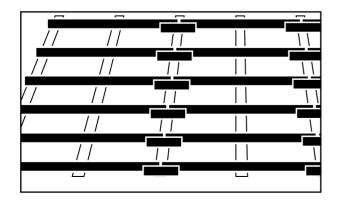
Die Systeme



Das Überlappsystem:

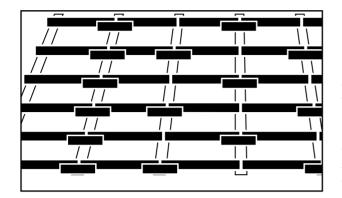
Das Overlap-System.

Die Anordnung der Pfetten erfolgt als Einfeldträger mit einem Überstand an beiden Enden. Bei jedem 2. Feld wird die Pfette gestürzt, so dass einmal der breite und im nächsten Feld der schmale Flansch oben liegt. Durch das nestende Profil kann ein Durchlaufträger von theoretisch unbegrenzter Länge erzeugt werden. Der große Vorteil des Überlappsystems ist die Möglichkeit, die Innenfelder in dünneren Wandstärken auszuführen. Dadurch wird bei langen Dächern eine große Gewichtsersparnis erreicht.


Anwendbar für Stützweiten bis 12 m. Besonders geeignet für Gebäude mit vielen Binderfeldern.

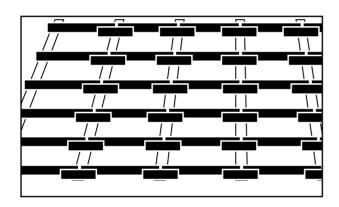
Das Zweifeldsystem:

Die Anordnung der Zweifeldträger erfolgt mit gegenseitig versetzten Stößen über den Bindern. Daraus ergibt sich eine gleichmäßige Belastung der Binder. Die im Endfeld verbleibende Einfeldpfette wird mit einer Lasche angeschlossen um damit eine Durchlaufwirkung zu erzeugen. Die Lasche ist ein ca. 1 m langes Stück Pfettenprofil. Dieses Pfettensystem bietet eine geringe Anzahl an Teilen bei einer hohen Wirksamkeit und Wirtschaftlichkeit. Die geringe Anzahl der Teile ermöglicht eine schnelle Montage der Pfetten.


Anwendbar für Stützweiten bis 6,5 m.

Das verlaschte Zweifeldsystem:

Die Anordnung der Zweifeldträger erfolgt mit Stößen über jedem zweiten Binder, die mit Laschen verbunden werden. Die Wirkung als Durchlaufträger wird durch die Anordnung der Laschen erreicht. Die Lasche ist ein ca. 1 m langes Stück Pfettenprofil.


Anwendbar für Stützweiten bis 6,5 m.

Das gelaschte Einfeldsystem:


Das Sleeve-System.

Dieses Pfettensystem bietet die gleichen Vorteile wie das Zweifeldsystem. Es kann dann zum Einsatz kommen, wenn die Zweifeldpfetten aus Transportgründen zu lang sind, die Montage vor Ort unter beengten Bedingungen stattfinden muss oder andere Gründe die Anwendung des Zweifeldsystems ausschließen. Die Wirkung als Zweifeldträger wird durch die gegenseitig versetzte Anordnung der Laschen erreicht. Die Endfelder werden wie beim Zweifeldsystem behandelt. Die Bemessung dieses Systems erfolgt nach den gleichen Grundlagen wie die des Zweifeldsystems, da es statisch diesem entspricht.

Das verlaschte Einfeldsystem:

Dieses Pfettensystem bietet die gleichen Vorteile wie das verlaschte Zweifeldsystem. Es kann dann zum Einsatz kommen, wenn die Zweifeldpfetten aus Transportgründen zu lang sind, die Montage vor Ort unter beengten Bedingungen stattfinden muss oder andere Gründe die Anwendung des Zweifeldsystems ausschließen. Die Wirkung als Durchlaufträger wird durch die Anordnung der Laschen erreicht.

Anordnung als Einfeldsystem:

Der Einsatz erfolgt wenn eine Montage zwischen den Stützen erforderlich ist oder der Einsatz von Durchlaufträgern nicht zulässig ist. Die Bemessung wird nach allgemeinen Stahlbauregeln durchgeführt.

Die verwendeten Materialien:

Pfetten und Wandriegel:

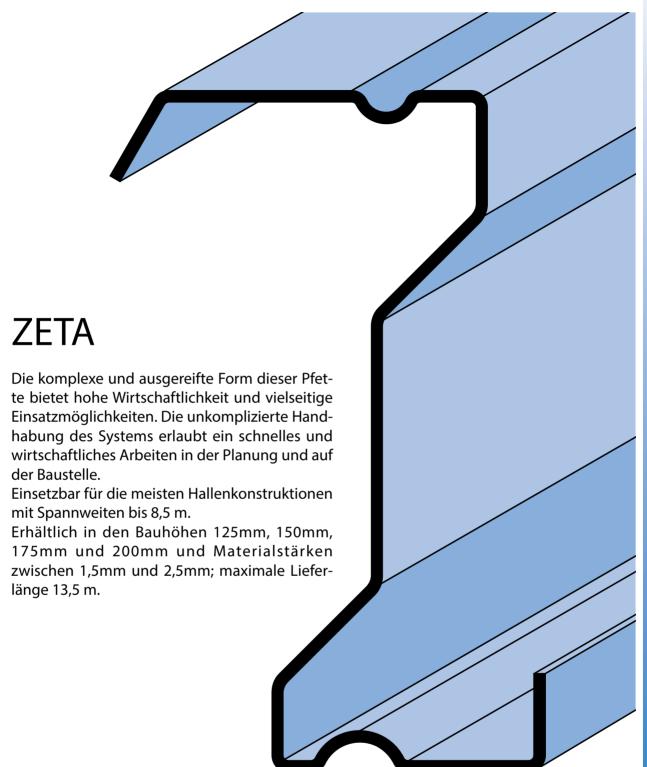
Für ZETA - Pfetten und Wandriegel wird als Ausgangsmaterial S450GD, ein zur Kaltverformung geeignetes Stahlblech nach DIN EN 10346, verwendet.

Verzinkung:

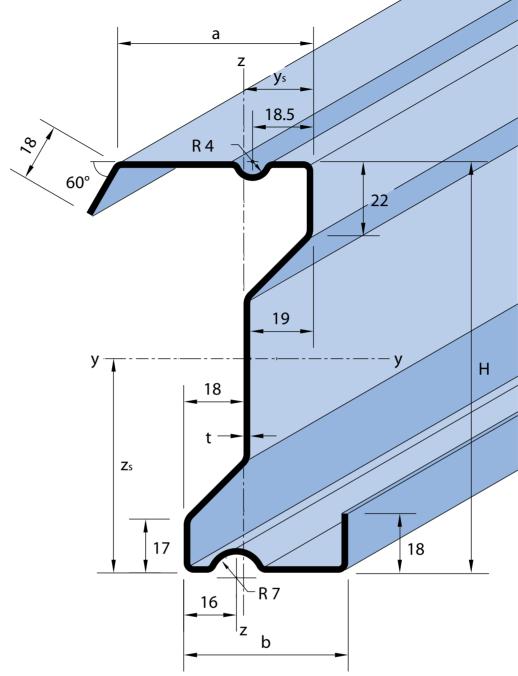
Die Verzinkung ist als Bandverzinkung nach DIN EN 10147 ausgeführt, die Schnittkanten sind unbehandelt.

Pfettenschuhe:

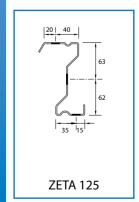
Die Pfettenschuhe werden aus S355 J2G3 nach DIN EN 10025 gefertigt. Pfettenschuhe vom Typ "C" sind unbehandelt und müssen bauseitig korrosionsgeschützt werden, Pfettenschuhe vom Typ "B" sind feuerverzinkt.

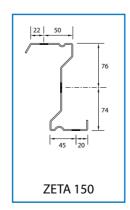

Qualitätssicherung:

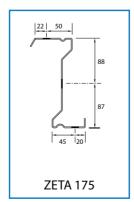
Die Fertigungswerke sind nach EN ISO 9001:2000 BSI Registered Firm Certifcate No. FM 34021 zertifiziert.

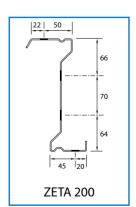

Die Produkte tragen das Übereinstimmungszeichen (Ü-Zeichen) über feuerverzinkte, dünnwandige, kaltgeformte Bauteile nach DASt-Richtlinie 016, Blechdicken: 1,3 mm bis 3,2 mm. Die Überwachung der Materialien erfolgt durch die LGA Bayern, die Eigenüberwachung der Produktion erfolgt nach EN ISO 9001:2000.+

Schrauben


Zur Verschraubung der Pfetten und Laschen untereinander und am Pfettenschuh sind Schrauben ISO 4017 M16 x 35 - 5.6 oder höherwertig mit Scheiben zu verwenden. Abstützungen und Diagonalen werden mit Schrauben ISO 4017 M12 x 30 - 5.6 oder höherwertig und Scheiben an der Pfette befestigt.




Profilquerschnitt



Querschnittsabmessungen

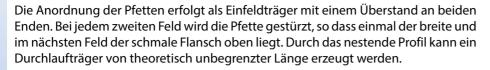
Lochbilder

Die Steglochungen werden in ø 18 mm, die Flanschlochungen in ø 14 mm ausgeführt. Die Lochungen für Verhängungen sind quadratisch 14 mm x 14 mm. Nur in den Systemachsen sind zusätzliche Systemlochungen möglich.

Тур		ZETA	12515	12517	12518	12520
Höhe	Н	[mm]	125	125	125	125
Dicke	t	[mm]	1,5	1,7	1,8	2,0
Oberflansch	a	[mm]	60	60	60	60
Unterflansch	b	[mm]	50	50	50	50
Gewicht		[kg/m]	3,16	3,58	3,8	4,21
Α		[cm2]	4,02	4,56	4,84	5,38
I,		[cm⁴]	96,4	109,2	115,2	128
W_y		[cm3]	14,81	16,76	17,69	19,64
ľ		[cm⁴]	13,7	15,6	16,7	18,3
i _z		[mm]	18,78	18,75	18,7	18,71
y _s		[mm]	21,5	21,6	21,7	21,8
Z _s		[mm]	65,1	65,1	65,2	65,2

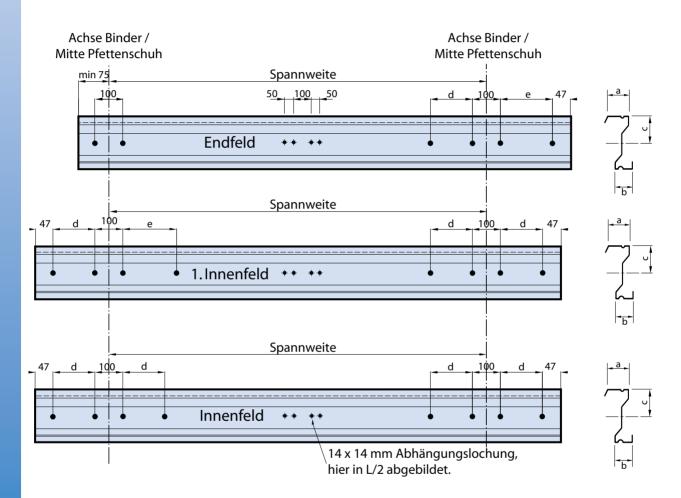
Тур		ZETA	15015	15017	15018	15020	15025
Höhe	Н	[mm]	150	150	150	150	150
Dicke	t	[mm]	1,5	1,7	1,8	2,0	2,5
Oberflansch	a	[mm]	72	72	72	72	72
Unterflansch	b	[mm]	65	65	65	65	65
Gewicht		[kg/m]	3,78	4,28	4,53	5,04	6,3
Α		[cm2]	4,82	5,46	5,78	6,42	8,03
I _v		[cm⁴]	170,2	192,9	203,8	226,5	281,2
W _v		[cm3]	21,98	24,9	26,31	29,22	36,27
ľ		[cm⁴]	25,8	29,3	31,2	34,4	43,5
i _z		[mm]	23,53	23,5	23,48	23,45	23,5
y _s		[mm]	21,5	21,6	21,7	21,8	21,9
z _s		[mm]	77,4	77,5	77,5	77,5	77,6

Тур		ZETA	17515*	17516	17517	17518	17520	17525
Höhe	Н	[mm]	175	175	175	175	175	175
Dicke	t	[mm]	1,5	1,6	1,7	1,8	2,0	2,5
Oberflansch	a	[mm]	72	72	72	72	72	72
Unterflansch	b	[mm]	65	65	65	65	65	65
Gewicht		[kg/m]	4,07	4,34	4,62	4,89	5,43	6,79
Α		[cm2]	5,19	5,54	5,88	6,23	6,92	8,65
Ļ		[cm⁴]	244	259,8	276,6	292,3	325	404,1
W,		[cm3]	27,07	28,81	30,67	31,18	36,02	44,77
ľ		[cm⁴]	25,8	28,0	29,3	32,5	34,5	43,6
i		[mm]	22,67	22,66	22,64	22,62	22,6	22,58
y¸		[mm]	21,4	21,4	21,5	21,6	21,7	21,8
Z _s		[mm]	90,2	90,2	90,2	90,2	90,2	90,3


Тур		ZETA	20015*	20016	20018	20020	20025
Höhe	Н	[mm]	200	200	200	200	200
Dicke	t	[mm]	1,5	1,6	1,8	2,0	2,5
Oberflansch	a	[mm]	72	72	72	72	72
Unterflansch	b	[mm]	65	65	65	65	65
Gewicht		[kg/m]	4,37	4,66	5,24	5,82	7,22
Α		[cm2]	5,57	5,94	6,68	7,42	9,20
I _v		[cm⁴]	334	356,4	400,9	445,2	554,4
$W_y^{'}$		[cm3]	32,47	34,64	38,96	43,25	53,83
ľ		[cm⁴]	25,8	27,5	31,0	34,5	43,0
i _z		[mm]	21,89	21,88	21,85	21,82	21,84
y _s		[mm]	21,3	21,4	21,5	21,6	21,9
Z _s		[mm]	102,7	102,9	102,9	102,9	103,0

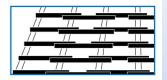
^{*} diese Profile sind nicht Bestandteil der allg. bauaufsichtlichen Zulassung.

ZETA

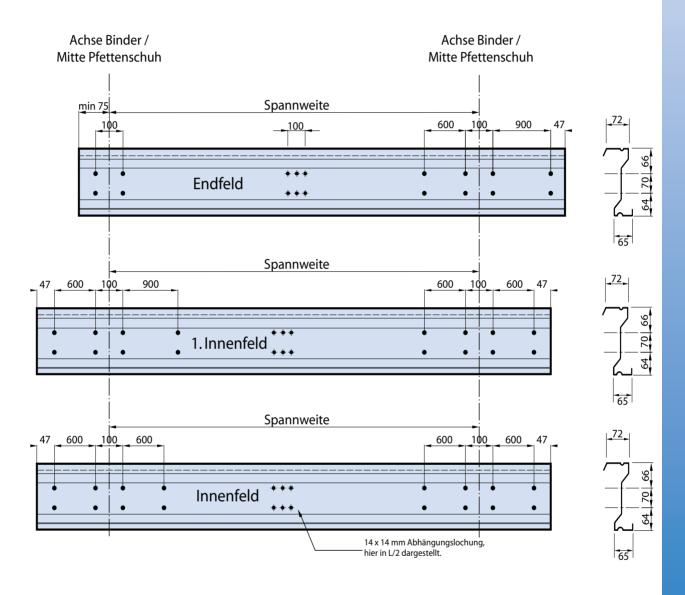

Pfettendetails

Überlappsystem:

ZETA 125 - 175



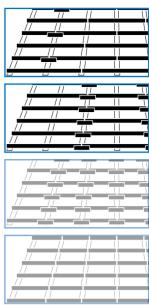
Maßdetails										
Тур	а	b	c	d	e					
ZETA 125	60	50	62	350	550					
ZETA 150	72	65	74	550	750					
ZETA 175	72	65	87	500	800					


Hinweis zum Pfettenüberstand:

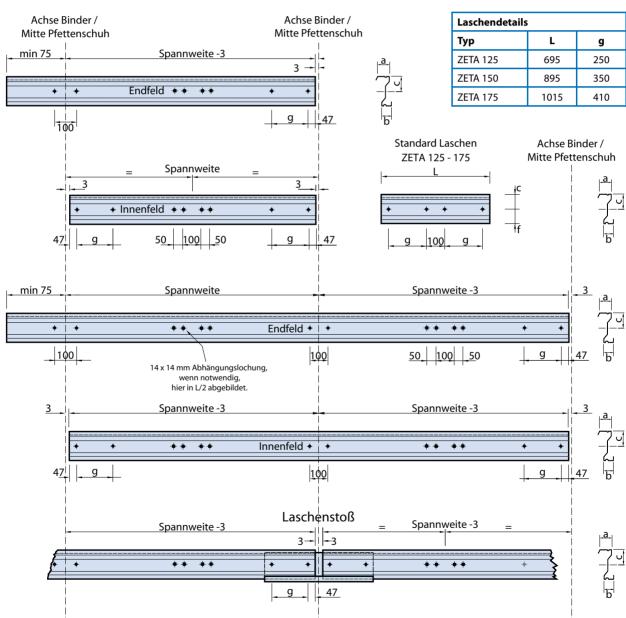
Überlappsystem:

Die Anordnung der Pfetten erfolgt als Einfeldträger mit einem Überstand an beiden Enden. Bei jedem zweiten Feld wird die Pfette gestürzt, so dass einmal der breite und im nächsten Feld der schmale Flansch oben liegt. Durch das nestende Profil kann ein Durchlaufträger von theoretisch unbegrenzter Länge erzeugt werden.

ZETA 200


Hinweis zum Pfettenüberstand:

Zweifeldsystem:


Die Anordnung der Zweifeldträger erfolgt mit gegenseitig versetzten Stößen über den Bindern. Die im Endfeld verbleibende Einfeldpfette wird mit einer Lasche gekoppelt, um damit eine Zwei- bzw. Dreifeldpfette zu erzeugen.

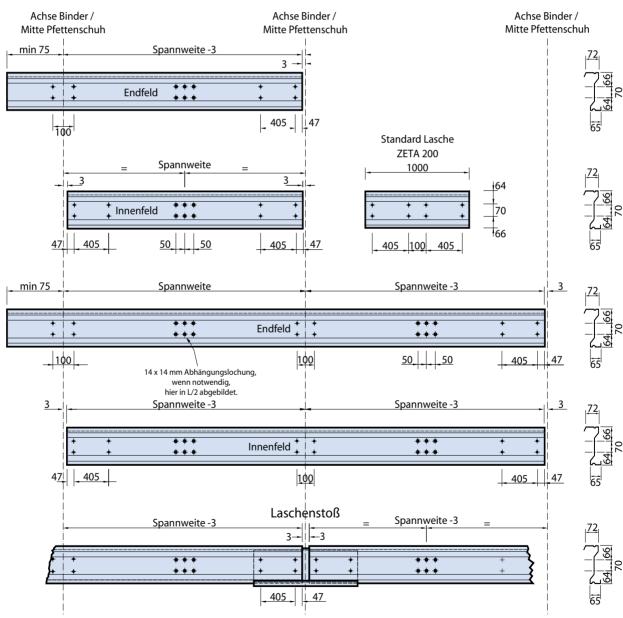
verlaschtes Zweifeldsystem:

Mit der Anordnung als verlaschtes Zweifeldsystem wird ein Durchlaufträger über die gesamte Länge des Pfettenstrangs erzeugt. Die Anordnung erfolgt wahlweise mit gegenseitig versetzten Stößen über den Bindern oder mit Pfettenstößen über jedem zweiten Binder. Bei versetzten Stößen und bei ungerader Anzahl von Feldern, wird die im Endfeld verbleibende Einfeldpfette mit einer Lasche angeschlossen, um die Durchlaufwirkung zu erhalten.

ZETA 125 - 175


Hinweis zum Pfettenüberstand:

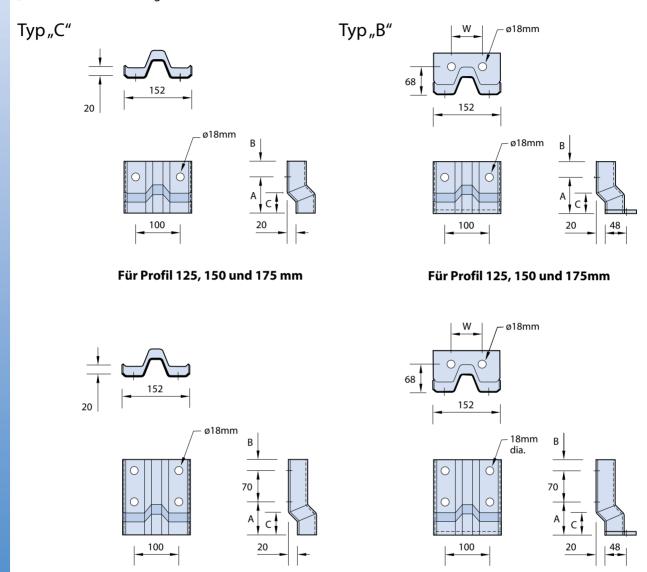
verlaschtes Einfeldsystem:


Die Einfeldträger werden in jedem Stoß mit einer Lasche zum Durchlaufträger verbunden.

Einfeldsystem:

Der Einsatz erfolgt wenn eine Montage zwischen den Stützen erforderlich ist oder der Einsatz von Durchlaufträgern nicht zulässig ist.

ZETA 200

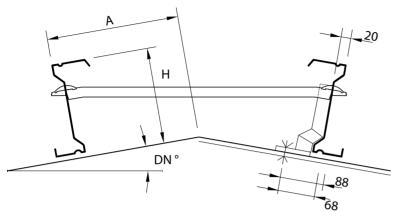

Hinweis zum Pfettenüberstand:

Pfettenschuhe

Die Pfettenschuhe können auf zwei Arten am Binder angebracht werden. Typ "C" zum Aufschweißen oder Typ "B" zum Aufschrauben. Typ "C" kann vorab geliefert werden, damit die Pfettenschuhe noch vor der Konservierung der Binder aufgeschweißt werden können. Typ "B" wird mit den Pfetten geliefert.

Die Konstruktionshöhe des Pfettensystems bei Verwendung von Standardpfettenschuhen ist gleich der Nennhöhe der Pfette +7 mm. Abweichende Maße können der untenstehenden Tabelle entnommen werden. Sonderpfettenschuhe sind auf Anfrage möglich.

Für Profil 200 mm

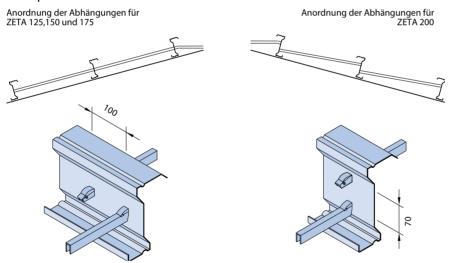

Für die Bestellung benötigen wir folgende Angaben: für Typ "C" die Nennhöhe und die Konstruktionshöhe (z. B. : C 150/157), für Typ "B" zusätzlich noch das Wurzelmaß in der Grundplatte (z.B.: B 150/157 W70). Grundplatten W70 und W100 sind lagernd, alle anderen Grundplatten haben eine ca. 5 - 10 Tage längere Lieferzeit.

Für Profil 200 mm

Profil	Pfettenschuh zum Auf- schweissen	Pfettenschuh zum Aufschrau- ben	Konstruktions- höhe	maximale Kon– struktionshöhe.	A Standard	A max.	Ф	C Standard	С тах.	W Standard	W möglich
ZETA 125	C 125	B 125	132	287	69	224	25	45	200	70	80, 90, 100
ZETA 150	C 150	B 150	157	312	81	236	35	45	200	70	80, 90, 100
ZETA 175	C 175	B 175	182	332	94	244	45	50	200	70	80, 90, 100
ZETA 200	C 200	B 200	207	360	71	224	25	47	197	70	80, 90, 100

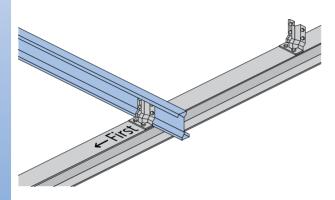
Firstverhängung:

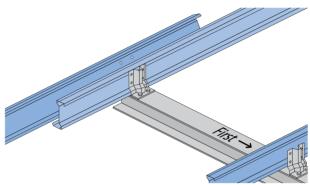
Die Firstverhängung dient zur Fixierung und Ausrichtung der Pfettenstränge im Montagezustand und trägt zusammen mit der Firstkappe den Dachschub ab.



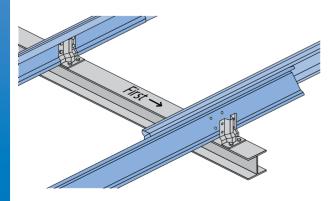
Zur Fertigung benötigte Angaben:

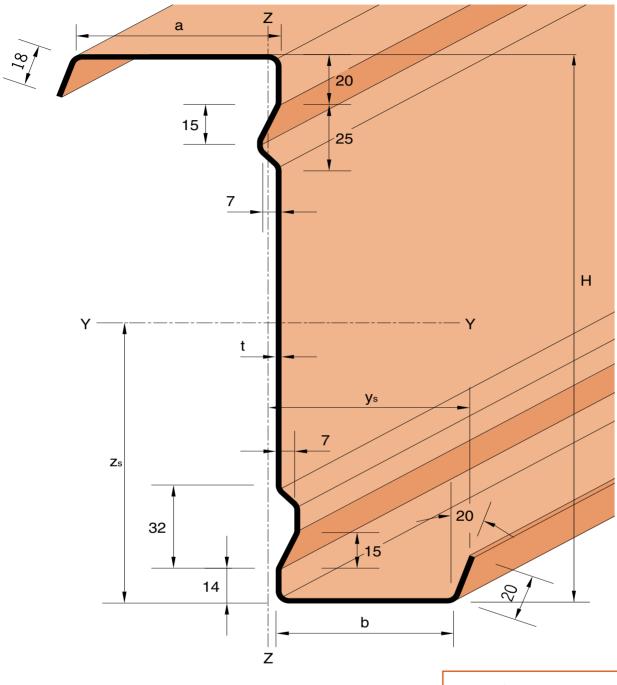
- Maß A (Ermittlung: Abstand Firstpunkt zum Steg Pfette +20 mm oder Abstand Firstpunkt zur Bohrung Pfettenschuh +88 mm)
- Maß H (Konstruktionshöhe Pfette)
- · Dachneigung DN in Grad.


Abhängungen:

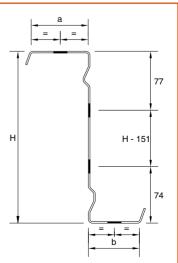

Nur in Sonderfällen sind Abhängungen erforderlich. Bitte sprechen Sie mit unserem technischen Büro.

Montageanleitung für ZETA-Pfetten im Überlappsystem


- 1. Vor dem Aufstellen der Hallenbinder sollten die Pfettenhalter auf die Binder geschraubt werden. Hierbei ist auf die korrekte Einbaulage zu achten. In der Regel muss die Pfette so montiert werden, dass der Oberflansch in Richtung First zeigt, d.h. die Pfette hängt am Pfettenschuh.
- 4. Die Pfette im nächsten Innenfeld wird nun wieder mit dem breiten Flansch nach oben in die 1. Innenfeldpfette geklappt und in Ihrer Lage durch die Verschraubung mit dem Pfettenhalter gesichert.


- 2. Zuerst wird die Endfeldpfette durch Schrauben mit dem Pfettenhalter auf dem Giebelrahmen in Ihrer Lage gesichert. Der breite Flansch der Endfeldpfette muss oben liegen.
- 3. Anschließend wird die 1. Innenfeldpfette am 1. Innenbinder zwischen die Endfeldpfette und den Pfettenhalter gebracht und in die Endfeldpfette geklappt. Hierbei muss der schmale Flansch der Innenfeldpfette oben liegen und es sollte darauf geachtet werden, dass die Löcher deckungsgleich zum Liegen kommen. Nun werden beide Pfetten gemeinsam in Ihrer Lage durch die Verschraubung mit dem Pfettenhalter gesichert.
- 5. So wird jetzt abwechselnd wie in 3. & 4. beschrieben mit der Montage fortgefahren. Zum Schluss können die Pfetten, falls erforderlich, noch ausgerichtet werden. Danach werden die Pfetten an den Überlappungen verschraubt und die Schrauben an den Pfettenhaltern festgezogen.

Der Zeitaufwand für das Montieren der Pfetten hängt stark von den örtlichen Gegebenheiten, der Größe des Gebäudes, der Ausrüstung und der Erfahrung der Monteure ab. Als Richtwert kann für 2 Monteure 1-2 min pro Laufmeter Pfette angenommen werden.



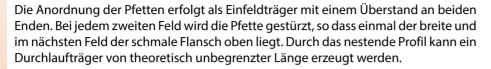
Profilquerschnitt

Lochbilder

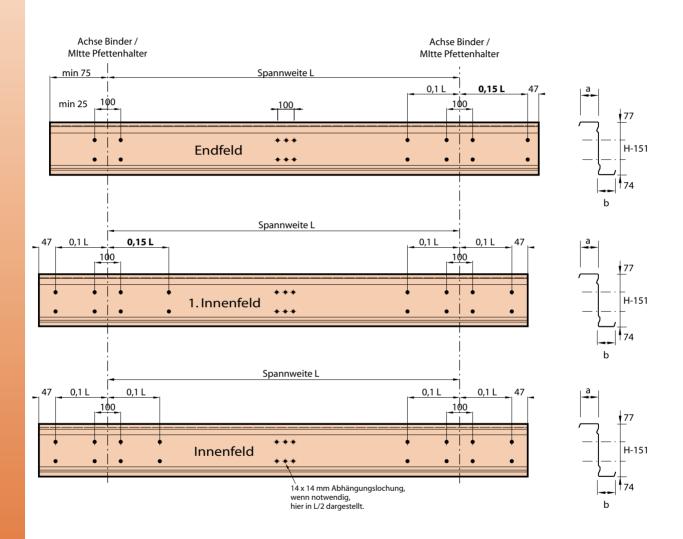
Die Steglochungen werden in ø 18 mm, die Flanschlochungen in ø 14 mm ausgeführt. Die Lochungen für Verhängungen sind quadratisch 14 mm x 14 mm. Nur in den Systemachsen sind zusätzliche Lochungen möglich.

Querschnittwerte **ZETA**

Тур	ZETA	II	22515	22516	22518	22520	22525
Höhe	Н	[mm]	225	225	225	225	225
Dicke	t	[mm]	1,5	1,6	1,8	2,0	2,5
Oberflansch	a	[mm]	78	78	78	78	78
Unterflansch	b	[mm]	68	68	68	68	68
Gewicht		[kg/m]	4,79	5,1	5,73	6,37	7,94
Α		[cm2]	6,10	6,50	7,31	8,11	10,11
I _v		[cm ⁴]	448,2	478,4	538,7	598,6	746,9
W _v		[cm3]	39,02	41,66	46,9	52,12	65,03
ľ		[cm ⁴]	64,1	68,5	77,2	86,0	107,7
i		[mm]	32,98	32,98	32,98	32,97	32,96
y _s		[mm]	75,2	75,2	75,2	75,4	75,7
\mathbf{z}_{s}		[mm]	114,9	114,9	114,9	114,9	114,9


Тур	ZETA	II	24515	24516	24518	24520	24525
Höhe	Н	[mm]	245	245	245	245	245
Dicke	t	[mm]	1,5	1,6	1,8	2,0	2,5
Oberflansch	a	[mm]	78	78	78	78	78
Unterflansch	b	[mm]	68	68	68	68	68
Gewicht		[kg/m]	5,02	5,35	6,02	6,68	8,31
Α		[cm2]	6,40	6,82	7,67	8,51	10,58
I _v		[cm ⁴]	547,9	584,9	658,6	732	913,7
W _v		[cm3]	43,85	46,81	52,72	58,59	73,13
ĺ		[cm ⁴]	64,1	68,5	77,2	86,0	107,7
i¸		[mm]	32,2	32,2	32,19	32,19	32,22
y¸		[mm]	75,1	75,1	75,2	75,3	75,6
Z _s		[mm]	124,9	124,9	124,9	124,9	124,9

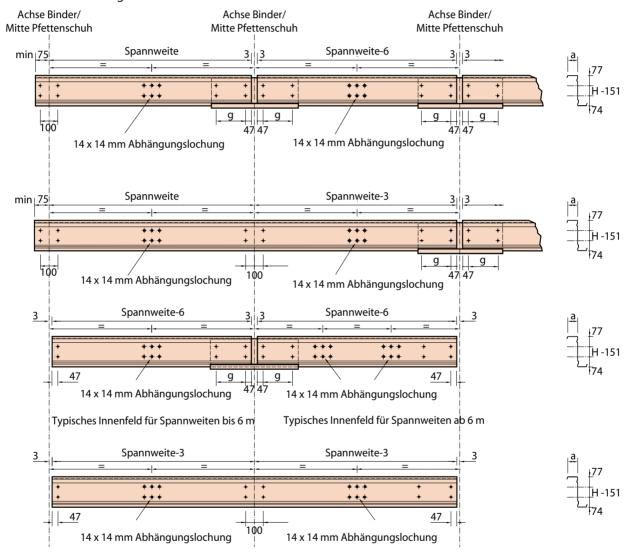
Тур	ZETA	II	26515	26516	26518	26520	26525	26530
Höhe	Н	[mm]	265	265	265	265	265	265
Dicke	t	[mm]	1,5	1,6	1,8	2,0	2,5	3,0
Oberflansch	a	[mm]	78	78	78	78	78	78
Unterflansch	b	[mm]	68	68	68	68	68	68
Gewicht		[kg/m]	5,26	5,61	6,3	6,99	8,72	10,44
Α		[cm2]	6,70	7,14	8,03	8,91	11,11	13,30
I _v		[cm ⁴]	659,9	704,5	793,5	882	1101,4	1318
W _v		[cm3]	48,88	52,18	58,77	65,33	81,58	97,62
ĺ		[cm ⁴]	64,1	68,5	77,3	86	107,7	129,3
i¸		[mm]	31,47	31,47	31,47	31,46	31,45	31,44
y¸		[mm]	75,0	75,0	75,1	75,2	75,5	75,7
Z _s		[mm]	135,0	135,0	135,0	135,0	135,0	135,0

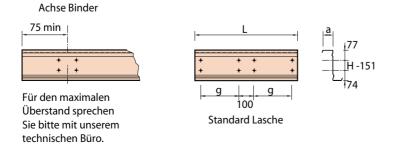

Тур	ZETA	II	28515	28516	28518	28520	28525	28530
Höhe	Н	[mm]	285	285	285	285	285	285
Dicke	t	[mm]	1,5	1,6	1,8	2,0	2,5	3,0
Oberflansch	a	[mm]	78	78	78	78	78	78
Unterflansch	b	[mm]	68	68	68	68	68	68
Gewicht		[kg/m]	5,49	5,86	6,58	7,31	9,11	10,91
Α		[cm2]	7,00	7,46	8,39	9,31	11,61	13,90
I,		[cm ⁴]	784,9	838,1	944	1049,4	1310,9	1569,2
W,		[cm3]	54,1	57,77	65,06	72,33	90,35	108,15
ľ		[cm ⁴]	64,1	68,5	77,3	86,0	107,7	129,3
i¸		[mm]	30,79	30,79	30,78	30,78	30,77	30,75
y _s		[mm]	74,9	75,0	75,1	75,2	75,4	75,7
Z _s		[mm]	145,1	145,1	145,1	145,1	145,1	145,1

Pfettendetails

Überlappsystem:

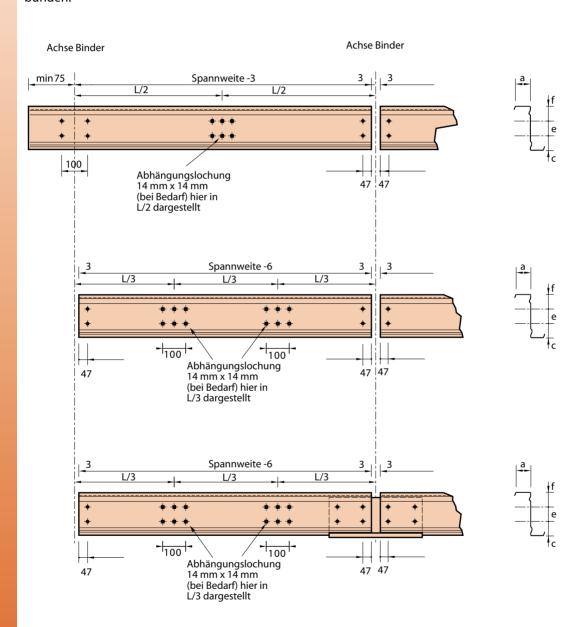



Zweifeldsystem:


Die Anordnung der Zweifeldträger erfolgt mit gegenseitig versetzten Stößen über den Bindern. Die im Endfeld verbleibende Einfeldpfette wird mit einer Lasche gekoppelt um damit eine Zwei- bzw. Dreifeldpfette zu erzeugen.

verlaschtes Zweifeldsystem:

Mit der Anordnung als verlaschtes Zweifeldsystem wird ein Durchlaufträger über die gesamte Länge des Pfettenstrangs erzeugt. Die Anordnung erfolgt wahlweise mit gegenseitig versetzten Stößen über den Bindern oder mit Pfettenstößen über jedem zweiten Binder. Bei versetzten Stößen und bei ungerader Anzahl von Feldern, wird die im Endfeld verbleibende Einfeldpfette mit einer Lasche angeschlossen, um die Durchlaufwirkung zu erhalten.

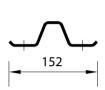

Laschendetails									
Typ L g									
ZETA II 225	850	350							
ZETA II 245	900	375							
ZETA II 265	950	400							
ZETA II 285	1000	425							

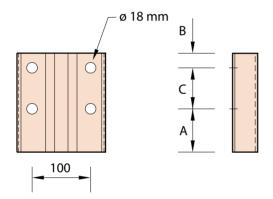
Einfeldsystem:

Der Einsatz erfolgt wenn eine Montage zwischen den Stützen erforderlich ist oder der Einsatz von Durchlaufträgern nicht zulässig ist.

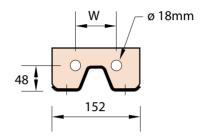
verlaschtes Einfeldsystem:

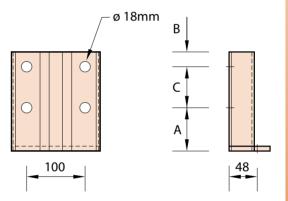
Die Einfeldträger werden in jedem Stoß mit einer Lasche zum Durchlaufträger verbunden.



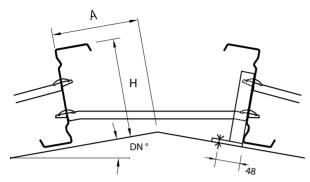

Pfettenschuhe

Die Pfettenschuhe können auf zwei Arten am Binder angebracht werden. Typ "C" zum Aufschweißen oder Typ"B" zum Aufschrauben. Beide Typen werden mit den Pfetten geliefert.


Die Konstruktionshöhe des Pfettensystems bei Verwendung von Standardpfettenschuhen ist gleich der Nennhöhe der Pfette +7 mm. Abweichende Maße können der untenstehenden Tabelle entnommen werden. Sonderpfettenschuhe sind auf Anfrage möglich.


Typ "C"

Typ "B"

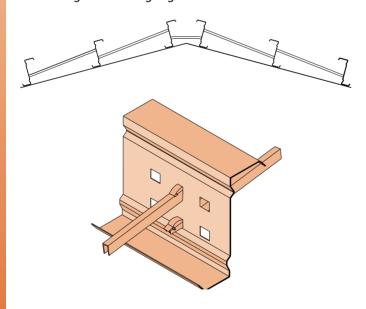

Für die Bestellung bitten wir Sie um folgende Angaben: für Typ "C" die Nennhöhe und die Konstruktionshöhe (z. B. : C 225/232) für Typ "B" zusätzlich noch das Wurzelmaß in der Grundplatte (z. B. : B 225/232 W100). Grundplatten W70 und W100 sind lagernd, alle anderen Grundplatten haben eine ca. 5 - 10 Tage längere Lieferzeit.

Profil	Pfettenschuh zum Auf- schweissen	Pfettenschuh zum Aufschrau- ben	Konstruktions- höhe	maximale Kon- struktionshöhe.	A Standard	A max.	В	U	W Standard	W möglich
ZETA 225	C 225	B 225	232	402	81	251	25	74	70	80, 90, 100
ZETA 245	C 245	B 245	252	402	81	231	25	94	70	80, 90, 100
ZETA 265	C 265	B 265	272	402	81	211	25	114	70	80, 90, 100
ZETA 285	C 285	B 285	292	402	81	191	25	134	70	80, 90, 100

Verhängungen

Firstverhängung:

Die Firstverhängung dient zur Fixierung und Ausrichtung der Pfettenstränge im Montagezustand und trägt zusammen mit der Firstkappe den Dachschub ab.

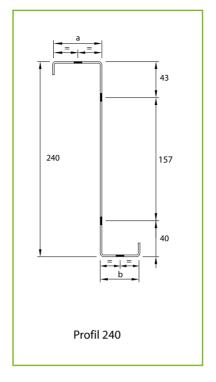

Zur Fertigung benötigte Angaben:

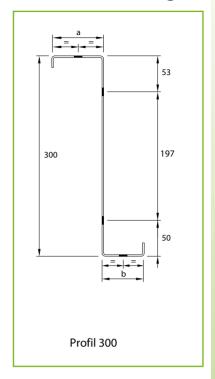
- Maß A (Ermittlung: Abstand Firstpunkt zum Steg Pfette oder Abstand Firstpunkt zur Bohrung Pfettenschuh + 48 mm)
- Maß H (Konstruktionshöhe Pfette)
- · Dachneigung DN in Grad.

Abhängungen:

Nur in Sonderfällen sind Abhängungen erforderlich. Bitte sprechen Sie mit unserem technischen Büro.

Anordnung der Verhängungen


ZED


Die gerade ZED – Pfette erlaubt einfache und wirkungsvolle Konstruktionen. Die Kontur dieses Profils ist besonders für kompliziertere Dachformen geeignet. Auch bei Wandkonstruktionen kommt das ZED - Profil zum Einsatz. Einsetzbar für Spannweiten bis zu 10 m, in Sonderfällen bis 12 m. Erhältlich in den Bauhöhen 240 mm und 300 mm und Materialstärken von 2,0 mm, 2,5 mm und 3,0 mm.

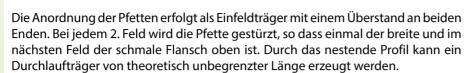
위 Profilquerschnitt Н

ZED Profilquerschnitt

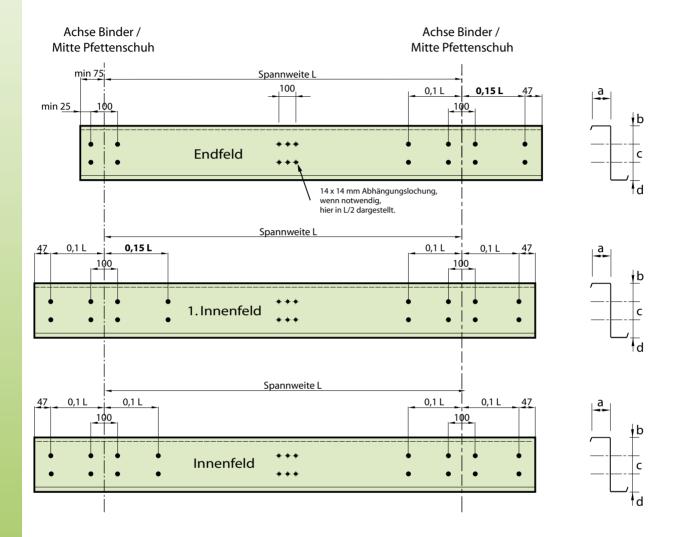
Querschnitts abmessungen

Lochbilder

Die Steglochungen werden in ø 18 mm, die Flanschlochungen in ø 14 mm ausgeführt. Die Lochungen für Verhängungen sind quadratisch 14 mm x 14 mm. Nur in den Systemachsen sind zusätzliche Lochungen möglich.

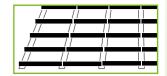

Querschnittwerte

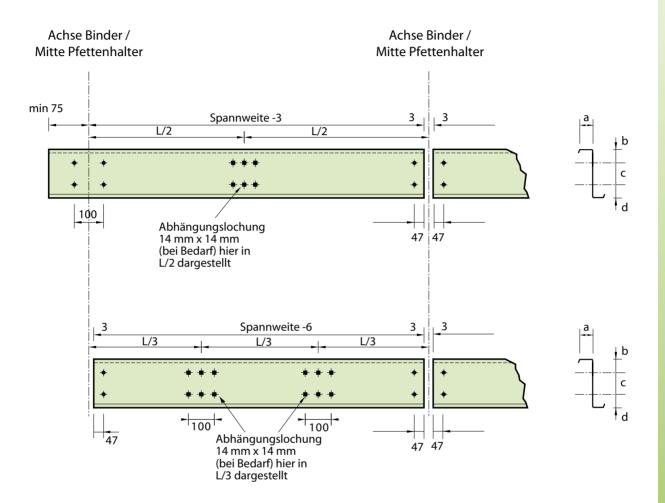
Тур			2420	2425	2430	3025	3030
Höhe	Н	[mm]	240	240	240	300	300
t	t	[mm]	2,0	2,5	3,2	2,5	3,0
Oberflansch	a	[mm]	76	76	76	94	94
Unterflansch	b	[mm]	68	68	68	86	86
Lippe	d	[mm]	24	26	26	27	27
Lippe	е	[mm]	24	26	26	31	31
Gewicht		[kg/m]	6,54	8,20	9,90	10,11	12,13
Α		[cm2]	8,18	10,25	12,29	12,88	15,45
I,		[cm ^{4]}	694,4	862,8	1028,2	1738,4	2081,3
W,		[cm3]	57,06	70,57	83,95	114,76	137,4
ľ		[cm⁴]	88,1	108,8	129,1	213,0	255,2
i¸		[mm]	32,8	32,6	32,4	41,09	40,99
ÿ́s		[mm]	70,7	71,4	71,9	91,6	91,8
Z _s		[mm]	133,6	138,3	153,6	151,5	151,5



Pfettendetails

Überlappsystem

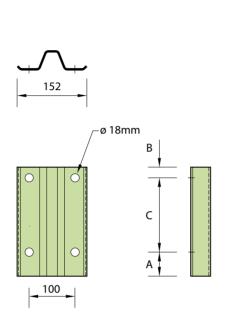




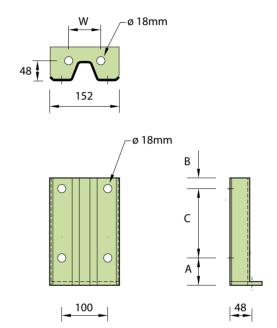
Maßdetails							
Тур	а	b	c	d			
ZED 240	76	43	157	40			
ZED 300	94	53	197	50			

Anordnung als Einfeldträger

Der Einsatz erfolgt wenn eine Montage zwischen den Stützen erforderlich ist oder der Einsatz von Durchlaufträgern nicht zulässig ist.


Maßdetails							
Тур	а	b	c	d			
ZED 240	76	43	157	40			
ZED 300	94	53	197	50			

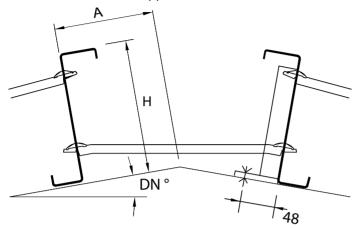
Pfettenschuhe


Die Pfettenschuhe können auf zwei Arten am Binder angebracht werden. Typ "C" zum Aufschweißen oder Typ "B" zum Aufschrauben. Beide Typen "B" und "C" werden mit den Pfetten geliefert.

Die Konstruktionshöhe des Pfettensystems bei Verwendung von Standardpfettenschuhen ist gleich der Nennhöhe der Pfette +7 mm. Abweichende Maße können der untenstehenden Tabelle entnommen werden. Sonderpfettenschuhe sind auf Anfrage möglich.

Typ "C"

Typ "B"

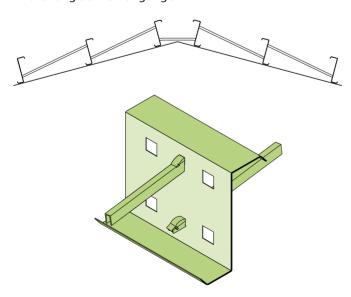


Für die Bestellung bitten wir Sie um folgende Angaben: für Typ "C" die Nennhöhe und die Konstruktionshöhe (z. B. : C 240/247) für Typ "B" zusätzlich noch das Wurzelmaß in der Grundplatte (z.B. : B 300/307 W100). Grundplatten W70 und W100 sind lagernd, alle anderen Grundplatten haben ca. 5 - 10 Tage längere Lieferzeit.

Profil	Pfettenschuh zum Auf- schweissen	Pfettenschuh zum Auf- schrauben	Konstruktions- höhe	maximale Kon-strukti- onshöhe.	A Standard	A max.	Ω	U	W Standard	W möglich
ZED 240	C 240	B 240	247	368	47	168	25	157	70	80, 90, 100
ZED 300	C 300	B 300	307	378	57	128	25	197	70	80, 90, 100

Firstverhängung:

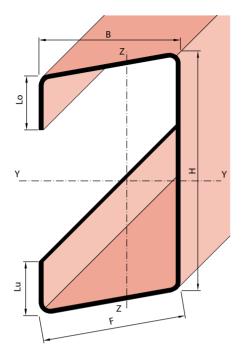
Die Firstverhängung dient zur Fixierung und Ausrichtung der Pfettenstränge im Montagezustand und trägt zusammen mit der Firstkappe den Dachschub ab.

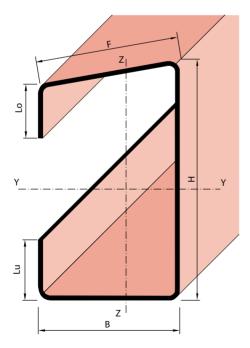

Zur Fertigung werden folgende Angaben benötigt:

- Maß A (Ermittlung: Abstand Firstpunkt zum Steg Pfette oder Abstand Firstpunkt zur Bohrung Pfettenschuh +48 mm)
- Maß H (Konstruktionshöhe Pfette)
- Dachneigung DN in Grad.

Abhängungen:

Nur in Sonderfällen sind Abhängungen erforderlich. Bitte sprechen Sie mit unserem technischen Büro.


Anordnung der Verhängungen

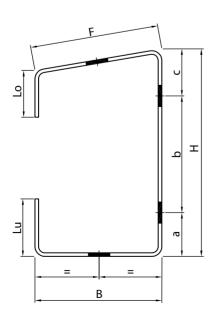

Profilquerschnitte

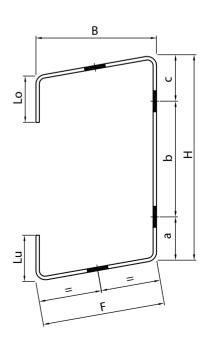
Typ TPP

Die Traufenprofile vom Typ TPP werden mit parallelen Flanschen ausgeführt. In Fällen in denen der schräge Unterflansch nicht stört, bietet diese Profilform einen Vorteil durch eine größere Anzahl an möglichen Querschnitten, und durch den schrägen Unterflansch, besseren Querschnittswerten gegenüber dem Typ TPN. Verfügbar in Größen ab 150 mm Höhe.

Typ TPN

Die Traufenprofile vom Typ TPN werden mit rechtwinklig zum Steg stehenden Unterflansch ausgeführt. Damit ist ein einfacher Anschluss von Tür- oder Torstehern sowie Auswechslungen für Fenster am Traufprofil möglich. Verfügbar in Größen ab 175 mm Höhe.

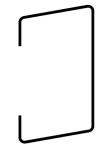

Übersicht der verfügbaren Profile.


Die unten aufgeführten Profile sind auf Fertigbarkeit geprüft. Gradweise Zwischengrößen sind möglich.

		Dachneigung				
Höhe	Breite	0°	5°	10°	15°	20°
150	90				TPP	TPP
150	105	TPP	TPP	TPP	TPP	TPP
175	105	TPP / TPN	TPP/TPN	TPP / TPN	TPP / TPN	TPP / TPN
200	105	TPP/TPN	TPP/TPN	TPP / TPN	TPP / TPN	TPP / TPN
200	140				TPP	TPP
225	105	TPP / TPN	TPP / TPN	TPP / TPN	TPP / TPN	TPP / TPN
225	140			TPP	TPP	TPP
245	105	TPP / TPN	TPP / TPN	TPP / TPN		
245	120				TPP / TPN	TPP / TPN
265	120	TPP / TPN	TPP / TPN	TPP / TPN	TPP / TPN	TPP / TPN
265	140	TPP	TPP	TPP	TPP	TPP
205	120	TPP / TPN	TPP / TPN	TPP / TPN	TPP / TPN	TPP / TPN
285	140	TPP/TPN	TPP/TPN	TPP / TPN	TPP / TPN	TPP

Lochbilder

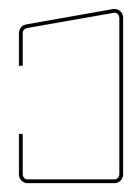
Im Steg ist wahlweise eine mittige oder in einer Doppelreihe angeordnete Lochung möglich. Diese kann entlang der Längsachse symmetrisch erfolgen oder nach dem von Ihnen vorgegebenen Lochbild. In den Flanschen kann eine Lochreihe mittig eingebracht werden. Alle Bohrungen sind in ø 18 mm oder ø 14 mm möglich, die Mindestrandabstände betragen 25 mm. Abweichende Lochbilder oder Locharten sind auf Anfrage möglich. Bitte sprechen Sie mit unserem technischen Büro.



Typ TPP

Die Tabelle enthält Querschnittswerte und Abmaße in 5° Schritten. Es sind darüber hinaus gradweise Zwischengrößen möglich.

Weitere Größen und Formen sind nach Rücksprache mit unserem technischem Büro möglich.

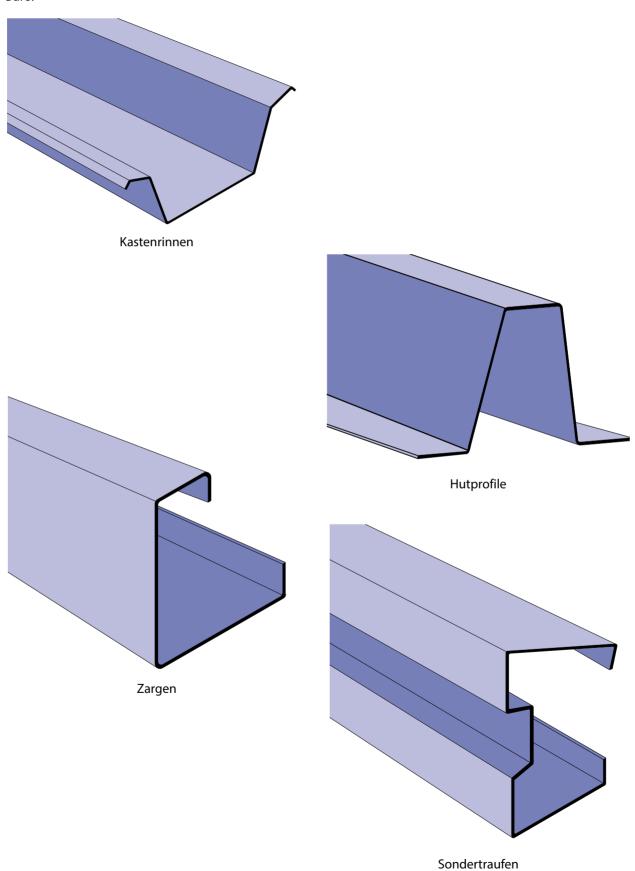

	н	В	N	t	F	L _o	L _u	G	Α	l _y	l,	W _v	W _z
	[mm]	[mm]	[°]	[mm]	- [mm]	_ ₀ [mm]	_u [mm]	[kg/m]	[cm²]	⁻y [cm⁴]	⁻z [cm⁴]	[cm³]	[cm³]
TPP-150-105-00-2,5	150	105	0	2,5	105	39	39	8,20	10,53	398,9	180,6	53,16	29,56
TPP-150-105-00-3	150	105	0	3,0	105	35	34	9,62	12,31	469,4	203,2	62,60	32,49
TPP-150-105-05-2,5	150	105	5	2,5	105	38	38	8,20	10,50	400,3	178,9	49,87	29,15
TPP-150-105-05-3	150	105	5	3,0	105	33	33	9,62	12,27	471,1	201,1	58,65	32,01
TPP-150-105-10-2,5	150	105	10	2,5	107	35	35	8,20	10,40	405,2	173,6	47,28	27,90
TPP-150-105-10-3	150	105	10	3,0	107	47	43	10,31	13,04	490,6	226,5	57,89	38,07
TPP-150-105-15-2,5	150	105	15	2,5	109	32	32	8,20	10,34	414,8	168,5	45,37	26,71
TPP-150-105-20-2,5	150	105	20	2,5	112	29	29	8,20	10,32	429,6	163,7	44,02	25,61
TPP-150-90-15-3	150	90	15	3,0	93	44	43	9,62	12,22	452,0	158,9	51,50	30,87
TPP-150-90-20-3	150	90	20	3,0	96	40	39	9,62	11,98	463,6	112,0	49,62	28,31
TPP-157-105-00-2,5	157	105	0	2,5	105	45	45	8,62	11,00	446,7	194,2	56,88	32,28
TPP-157-105-05-2,5	157	105	5	2,5	105	44	44	8,62	10,96	448,4	192,4	53,58	31,85
TPP-157-105-10-2,5	157	105	10	2,5	107	41	41	8,62	10,87	454,2	187,4	51,02	30,60
TPP-175-105-00-2,5	175	105	0	2,5	105	42	42	8,85	11,30	571,0	196,8	65,23	31,42
TPP-175-105-00-3	175	105	0	3,0	105	47	46	10,75	13,76	683,6	242,0	79,14	39,29
TPP-175-105-05-2,5	175	105	5	2,5	105	31	31	8,85	11,26	572,4	194,9	61,62	30,98
TPP-175-105-05-3	175	105	5	3,0	105	46	45	10,75	13,72	686,0	239,8	73,98	38,77
TPP-175-105-10-2,5	175	105	10	2,5	107	41	41	8,85	11,16	577,6	189,4	58,67	29,72
TPP-175-105-10-3	175	105	10	3,0	107	43	42	10,75	13,63	697,0	230,8	70,57	37,50
TPP-175-105-15-2,5	175	105	15	2,5	109	38	38	8,85	11,10	558,4	184,0	56,42	28,51
TPP-175-105-15-3	175	105	15	3,0	109	44	34	10,75	13,55	701,8	228,1	66,80	36,00
TPP-175-105-20-2,5	175	105	20	2,5	112	35	35	8,85	11,03	603,8	176,8	54,56	26,95
TPP-175-105-20-3	175	105	20	3,0	112	40	30	10,75	13,46	719,0	219,4	64,57	34,06
TPP-182-105-00-3	182	105	0	3,0	105	43	43	10,75	13,80	744,7	238,9	81,49	37,93
TPP-182-105-05-3	182	105	5	3,0	105	42	42	10,75	13,75	746,2	236,6	77,12	37,41
TPP-182-105-10-3	182	105	10	3,0	107	39	39	10,75	13,63	753,3	230,0	73,90	35,91
TPP-182-105-15-3	182	105	15	3,0	109	36	36	10,75	13,53	761,3	222,2	70,04	34,17
TPP-182-105-20-3	182	105	20	3,0	112	32	32	10,75	13,50	782,4	215,8	68,19	32,79
TPP-200-105-00-2,5	200	105	0	2,5	105	51	51	9,71	12,35	789,3	223,9	78,91	35,83
TPP-200-105-00-3	200	105	0	3,0	105	50	49	11,49	14,71	937,7	262,2	93,69	41,72
TPP-200-105-05-2,5	200	105	5	2,5	105	50	50	9,71	12,32	791,1	222,0	75,08	35,39
TPP-200-105-05-3	200	105	5	3,0	105	49	48	11,49	14,67	940,0	260,0	89,16	41,20
TPP-200-105-10-2,5	200	105	10	2,5	107	47	47	9,71	12,22	797,7	216,4	71,93	34,09
TPP-200-105-10-3	200	105	10	3,0	107	47	44	11,49	14,55	946,6	253,3	85,11	39,66
TPP-200-105-15-2,5	200	105	15	2,5	109	44	44	9,71	12,15	811,3	210,9	69,53	32,82
TPP-200-105-15-3	200	105	15	3,0	109	44	40	11,49	14,47	960,5	246,5	81,87	38,14
TPP-200-105-20-2,5	200	105	20	2,5	112	40	40	9,71	12,08	830,9	203,5	67,56	31,20
TPP-200-105-20-3	200	105	20	3,0	112	42	35	11,49	14,46	980,5	240,9	79,02	36,90

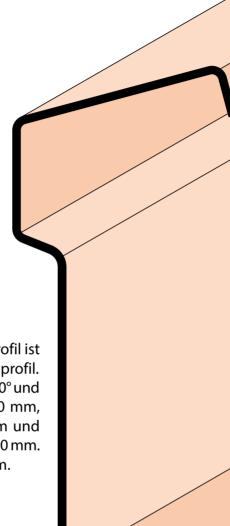
	Н	В	N	t	F	L _o	L _u	G	Α	l _y	l _z	W _y	W,
	[mm]	[mm]	[°]	[mm]	[mm]	o [mm]	u [mm]	[kg/m]	[cm²]	y [cm⁴]	z [cm⁴]	y [cm³]	z [cm³]
TPP-207-105-00-3	207	105	0	3,0	105	61	61	11,49	15,60	1032,0	290,5	99,73	47,86
TPP-207-105-05-3	207	105	5	3,0	105	60	60	11,49	15,56	1035,4	288,5	95,30	47,34
TPP-207-105-10-3	207	105	10	3,0	107	57	57	11,49	15,49	1046,8	284,2	91,85	46,25
TPP-207-105-15-3	207	105	15	3,0	109	56	52	11,49	15,35	1064,9	275,7	89,02	44,19
TPP-207-105-20-3	207	105	20	3,0	112	52	48	11,49	15,25	1092,4	267,1	86,94	42,16
TPP-207-140-15-3	207	140	15	3,0	145	46	45	13,51	16,97	1288,4	499,5	102,73	59,36
TPP-207-140-20-3	207	140	20	3,0	149	41	40	13,51	16,88	1330,1	481,2	99,46	56,27
TPP-225-105-00-3	225	105	0	3,0	105	52	52	12,20	15,60	1240,1	279,7	110,25	43,58
TPP-225-105-05-3	225	105	5	3,0	105	52	50	12,20	15,56	1242,2	277,4	105,11	43,05
TPP-225-105-10-3	225	105	10	3,0	107	49	47	12,20	15,44	1250,2	270,4	101,14	41,49
TPP-225-105-15-3	225	105	15	3,0	109	46	44	12,20	15,35	1267,5	263,4	97,85	39,97
TPP-225-140-10-3	225	140	10	3,0	142	40	39	13,51	16,89	1484,0	479,1	116,22	54,33
TPP-225-140-15-3	225	140	15	3,0	145	36	36	13,51	17,00	1520,1	478,3	112,07	54,19
TPP-225-140-20-3	225	140	20	3,0	149	31	31	13,51	16,92	1553,8	458,6	107,42	51,17
TPP-232-105-00-3	232	105	0	3,0	105	48	47	12,20	15,63	1324,8	275,7	114,23	42,14
TPP-232-105-05-3	232	105	5	3,0	105	48	47	12,20	15,56	1325,3	272,0	108,91	41,35
TPP-232-105-10-3	232	105	10	3,0	107	45	44	12,20	15,44	1331,3	264,7	104,43	39,79
TPP-232-105-15-3	232	105	15	3,0	109	42	41	12,20	15,36	1347,2	257,5	100,88	38,29
TPP-232-105-20-3	232	105	20	3,0	112	39	36	12,20	15,27	1369,9	247,9	97,82	36,33
TPP-245-105-00-3	245	105	0	3,0	105	42	42	12,20	15,60	1480,4	263,2	120,87	38,68
TPP-245-105-05-3	245	105	5	3,0	105	41	41	12,20	15,56	1480,9	260,6	115,17	38,14
TPP-245-105-10-3	245	105	10	3,0	107	38	37	12,20	15,44	1484,9	252,8	110,57	36,61
TPP-245-120-15-3	245	120	15	3,0	124	48	47	13,51	17,01	1691,0	378,1	118,93	50,14
TPP-245-120-20-3	245	120	20	3,0	128	45	40	13,51	16,88	1717,7	362,6	114,39	47,30
TDD 045 440 00 0								4.5.00					
TPP-265-140-00-3	265	140	0	3,0	140	75	54	15,38	19,65	2214,5	631,1	164,5	75,3
TPP-265-140-05-3	265	140	5	3,0	141	70	54	15,38	19,50	2222,9	619,1	160,1	73,2
TPP-265-140-15-3	265	140	15	3,0	145	59	54	15,38	19,35	2285,7	595,1	147,9	69,1
TPP-265-140-20-3	265	140	20	3,0	149	54	49	15,38	19,26	2339,9	575,4	143,4	65,9
TPP-272-120-00-3	272	120	0	3,0	120	81	81	15,38	19,60	2180,5	494,1	160,4	70,9
TPP-272-120-05-3 TPP-272-120-10-3	272 272	120 120	5 10	3,0 3,0	120 122	78 78	78 76	15,38 15,38	19,55 19,43	2186,9 2206,3	491,3 482,6	154,1 149,05	70,3 68,4
TPP-272-120-10-3	272	120	15	3,0	124	78 78	70 72	15,38	19,45	2243,6	474,0	145,3	66,5
TPP-272-120-13-3	272	120	20	3,0	124	70	68	15,38	19,21	2292,5	459,4	141,9	63,4
111 272 120 20 3	212	120	20	3,0	120	70	00	15,50	17,21	22,72,3	ד,ככד	כ,ודו	03,4
TPP-285-140-00-3	285	140	0	3,0	140	54	54	15,38	19,63	2586,6	603,1	181,54	68,48
TPP-285-140-05-3	285	140	5	3,0	141	52	52	15,38	19,59	2592,4	598,8	172,77	67,79
TPP-285-140-10-3	285	140	10	3,0	142	50	50	15,38	19,46	2606,2	583,4	164,96	65,38
TPP-285-140-15-3	285	140	15	3,0	145	46	46	15,38	19,36	2638,1	566,3	158,81	62,74
TPP-285-140-20-3	285	140	20	3,0	149	41	41	15,38	19,27	2690,5	545,2	154,07	59,59
TPP-292-120-00-3	292	120	0	3,0	120	71	71	15,38	19,60	2553,8	478,2	174,94	65,30
TPP-292-120-05-3	292	120	5	3,0	120	70	70	15,38	19,44	2552,0	468,9	167,62	63,44
TPP-292-120-10-3	292	120	10	3,0	122	67	67	15,38	19,44	2575,2	465,8	162,34	62,82
TPP-292-120-15-3	292	120	15	3,0	124	64	63	15,38	19,36	2609,9	456,3	157,85	60,96
TPP-292-120-20-3	292	120	20	3,0	128	59	58	15,38	19,23	2655,8	440,6	153,88	57,99
2,2 .20 20 3				2,3			55	. 5,50	, _ 3	_ 330,0		. 55,50	/

Typ TPN

Die Tabelle enthält Querschnittswerte und Abmaße in 5° Schritten. Es sind darüber hinaus gradweise Zwischengrößen möglich.

Weitere Größen und Formen sind nach Rücksprache mit unserem technischem Büro möglich.

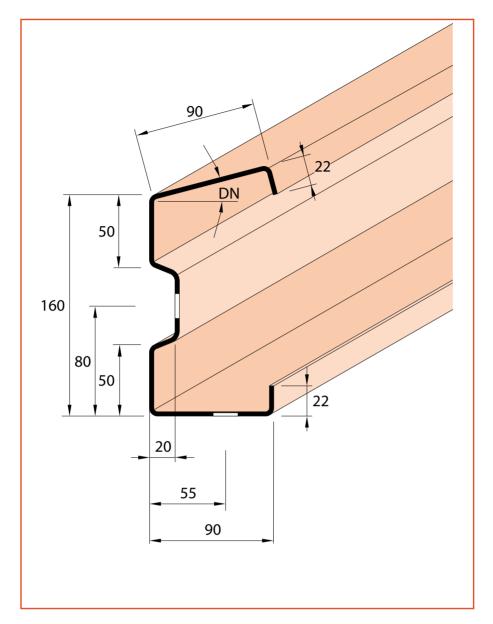



	Н	В	N	t	F	L _o	L,	G	Α	l _y	l,	W _v	W,
	[mm]	[mm]	[°]	[mm]	[mm]	[mm]	[mm]	[kg/m]	[cm²]	y [cm⁴]	z [cm⁴]	y [cm³]	[cm³]
TPN-175-105-00-2,5	175	105	0	2,5	105	42	42	8,85	11,30	571,0	196,8	65,23	31,42
TPN-175-105-00-3	175	105	0	3,0	105	47	46	10,75	13,76	683,6	241,9	79,14	39,29
TPN-175-105-05-2,5	175	105	5	2,5	105	42	41	8,85	11,28	540,7	195,8	60,64	31,18
TPN-175-105-05-3	175	105	5	3,0	105	45	46	10,75	13,74	647,3	240,9	72,47	39,03
TPN-175-105-10-2,5	175	105	10	2,5	107	40	40	8,85	11,22	513,2	192,9	56,48	30,51
TPN-175-105-10-3	175	105	10	3,0	107	45	44	10,75	13,70	614,0	238,4	67,61	38,43
TPN-175-105-15-2,5	175	105	15	2,5	109	37	40	8,85	11,11	488,1	187,0	52,62	29,19
TPN-175-105-15-3	175	105	15	3,0	109	36	50	10,75	13,66	585,2	235,1	62,68	37,63
TPN-175-105-20-2,5	175	105	20	2,5	112	32	41	8,85	11,14	467,1	186,02	49,51	28,95
TPN-175-105-20-3	175	105	20	3,0	112	32	50	10,75	13,61	559,0	230,8	58,90	36,63
TPN-182-105-00-3	182	105	0	3,0	105	43	43	10,75	13,79	744,7	238,9	81,49	37,93
TPN-182-105-05-3	182	105	5	3,0	105	44	41	10,75	13,84	714,8	241,3	77,09	38,06
TPN-182-105-10-3	182	105	10	3,0	107	41	41	10,75	13,70	672,4	234,2	71,35	36,84
TPN-182-105-15-3	182	105	15	3,0	109	40	39	10,75	13,65	640,9	230,4	67,03	35,99
TPN-182-105-20-3	182	105	20	3,0	112	38	37	10,75	13,59	612,4	225,5	63,18	34,90
TPN-200-105-00-2,5	200	105	0	2,5	105	51	51	9,71	12,35	789,3	223,9	78,91	35,83
TPN-200-105-00-3	200	105	0	3,0	105	50	49	11,49	14,71	937,7	262,2	93,69	41,72
TPN-200-105-05-2,5	200	105	5	2,5	105	51	50	9,71	12,33	752,1	222,8	73,97	35,59
TPN-200-105-05-3	200	105	5	3,0	105	50	48	11,49	14,69	893,9	261,0	88,08	41,43
TPN-200-105-10-2,5	200	105	10	2,5	107	51	45	9,71	12,23	716,2	217,9	69,65	34,43
TPN-200-105-10-3	200	105	10	3,0	107	53	45	11,49	14,71	853,7	260,6	83,19	41,35
TPN-200-105-15-2,5	200	105	15	2,5	109	50	45	9,71	12,23	686,4	216,6	65,71	34,12
TPN-200-105-15-3	200	105	15	3,0	109	47	45	11,49	14,56	816,6	253,5	78,11	39,71
TPN-200-105-20-2,5	200	105	20	2,5	112	46	45	9,71	12,18	658,8	212,4	62,08	33,16
TPN-200-105-20-3	200	105	20	3,0	112	44	44	11,49	14,50	783,7	248,5	73,91	38,57
TPN-207-105-00-3	207	105	0	3,0	105	61	61	11,49	15,60	1032,0	290,5	99,73	47,86
TPN-207-105-05-3	207	105	5	3,0	105	46	45	11,49	14,69	964,9	256,2	91,89	39,77
TPN-207-105-10-3	207	105	10	3,0	107	46	42	11,49	14,62	922,3	252,4	86,83	38,93
TPN-207-105-15-3	207	105	15	3,0	109	45	40	11,49	14,56	883,8	248,4	82,19	38,04
TPN-207-105-20-3	207	105	20	3,0	112	45	36	11,49	14,50	847,0	243,1	78,13	36,90
TPN-225-105-00-3	225	105	0	3,0	105	52	52	12,20	15,60	1240,1	279,7	110,25	43,58
TPN-225-105-05-3	225	105	5	3,0	105	53	50	12,20	15,58	1188,8	278,4	104,47	43,29
TPN-225-105-10-3	225	105	10	3,0	107	50	50	12,20	15,50	1141,2	274,5	98,69	42,42
TPN-225-105-15-3	225	105	15	3,0	109	50	47	12,20	15,45	1096,9	270,5	93,97	41,52
TPN-225-105-20-3	225	105	20	3,0	112	50	43	12,20	15,38	1055,1	265,0	89,71	40,32
TPN-232-105-00-3	232	105	0	3,0	105	48	47	12,20	15,63	1324,8	275,8	114,23	42,140
TPN-232-105-05-3	232	105	5	3,0	105	50	47	12,20	15,61	1272,4	274,4	108,56	41,85

	Н	В	N	t	F	L _o	L _u	G	A	l _y	l _z	W _y	$\mathbf{W}_{\mathbf{z}}$
	[mm]	[mm]	[°]	[mm]	[mm]	[mm]	[mm]	[kg/m]	[cm²]	[cm ⁴]	[cm ⁴]	[cm³]	[cm³]
TPN-232-105-10-3	232	105	10	3,0	107	50	42	12,20	15,47	1218,8	267,8	103,23	40,45
TPN-232-105-15-3	232	105	15	3,0	109	50	40	12,20	15,45	1173,6	264,9	98,43	39,82
TPN-232-105-20-3	232	105	20	3,0	112	47	40	12,20	15,42	1134,0	260,6	93,89	38,93
TPN-245-105-00-3	245	105	0	3,0	105	42	42	12,20	15,60	1480,4	263,2	120,87	38,68
TPN-245-105-05-3	245	105	5	3,0	105	42	41	12,20	15,58	1427,3	261,9	115,29	38,41
TPN-245-105-10-3	245	105	10	3,0	107	42	39	12,20	15,54	1376,6	259,0	110,25	37,83
TPN-245-120-15-3	245	120	15	3,0	124	52	50	13,51	17,09	1454,3	387,3	114,08	51,88
TPN-245-120-20-3	245	120	20	3,0	128	50	47	13,51	17,00	1397,5	378,6	108,49	50,23
TPN-265-120-00-3	265	120	0	3,0	120	45	44	13,51	17,23	1941,4	377,7	146,38	48,63
TPN-265-120-05-3	265	120	5	3,0	120	44	44	13,51	17,21	1868,6	376,0	139,28	48,33
TPN-265-120-10-3	265	120	10	3,0	122	43	42	13,51	17,14	1798,2	370,5	132,66	47,37
TPN-265-120-15-3	265	120	15	3,0	124	42	40	13,51	17,10	1733,6	364,7	126,70	46,36
TPN-265-120-20-3	265	120	20	3,0	128	40	37	13,51	17,02	1671,4	355,5	121,22	44,80
TPN-272-120-00-3	272	120	0	3,0	120	81	81	15,38	19,60	2180,5	494,1	160,36	70,90
TPN-272-120-05-3	272	120	5	3,0	120	40	40	13,51	16,79	1851,3	362,0	138,04	45,90
TPN-272-120-10-3	272	120	10	3,0	122	39	39	13,51	16,94	1784,6	358,2	131,60	45,25
TPN-272-120-15-3	272	120	15	3,0	124	38	38	13,51	16,93	1723,8	354,4	125,87	44,60
TPN-272-120-20-3	272	120	20	3,0	128	35	35	13,51	16,82	1661,5	343,4	120,34	42,77
TPN-285-140-00-3	285	140	0	3,0	140	54	54	15,38	19,63	2586,6	603,1	181,54	68,48
TPN-285-140-05-3	285	140	5	3,0	141	55	52	15,38	19,55	2473,7	596,3	171,54	67,40
TPN-285-140-10-3	285	140	10	3,0	142	50	55	15,38	19,52	2376,6	591,3	161,56	66,61
TPN-285-140-15-3	285	140	15	3,0	145	47	55	15,38	19,48	2287,6	584,2	153,38	65,50
TPN-285-120-20-3	285	120	20	3,0	128	50	87	15,38	19,37	2094,5	464,6	137,42	63,22
TPN-292-120-00-3	292	120	0	3,0	120	71	71	15,38	19,60	2553,8	478,2	174,94	65,30
TPN-292-120-05-3	292	120	5	3,0	120	71	70	15,38	19,57	2460,1	476,6	166,49	64,97
TPN-292-120-10-3	292	120	10	3,0	122	68	70	15,38	19,50	2372,6	471,3	158,36	63,91
TPN-292-120-15-3	292	120	15	3,0	124	65	70	15,38	19,45	2293,3	465,7	151,15	62,79
TPN-292-120-20-3	292	120	20	3,0	128	60	70	15,38	19,35	2220,0	456,8	144,53	61,06
TPN-292-140-00-3	292	140	0	3,0	140	52	52	15,38	19,65	2720,4	594,7	186,36	66,54
TPN-292-140-05-3	292	140	5	3,0	141	50	50	15,38	19,55	2603,7	585,3	175,91	65,10
TPN-292-140-10-3	292	140	10	3,0	142	48	50	15,38	19,52	2503,9	580,2	166,77	64,31
TPN-292-120-15-3	292	140	15	3,0	145	44	50	15,38	19,46	2411,8	570,8	158,41	62,88

Sonderkantteile

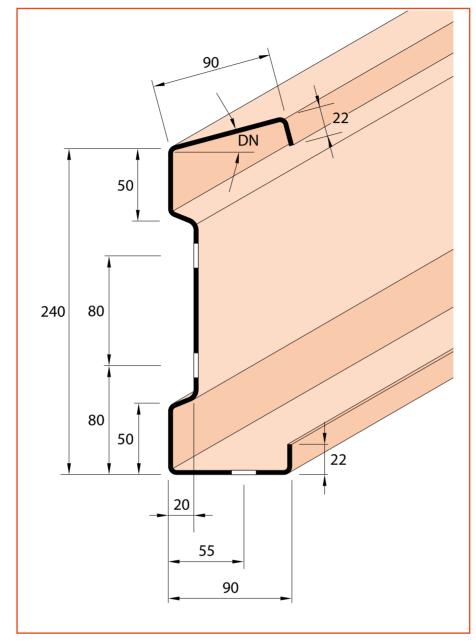
Die unten gezeigten Profile stellen einige Beispiele dar. Wenn Sie eine Lösung für ein bestimmtes Kantprofil suchen und es in diesen Unterlagen noch nicht finden konnten, sprechen Sie bitte mit unserem technischem Büro.



Traufenprofil "Eaves Beam"

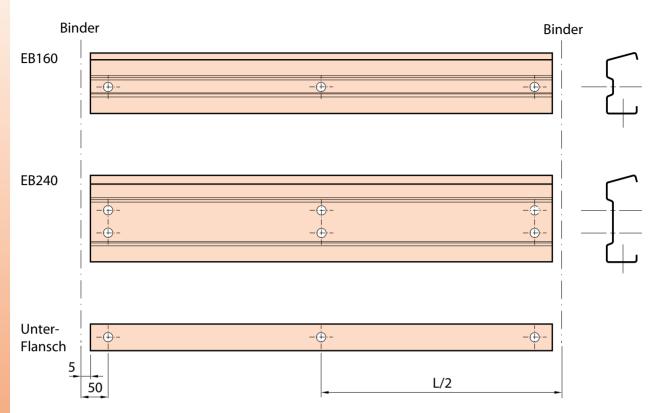
Dieses gerollte, nach innen geöffnete Profil ist eine weitere Möglichkeit für ein Traufenprofil. Erhältlich für Dachneigungen von 0°, 5°, 10° und 15°, in Bauhöhen von 160 mm und 240 mm, in den Materialstärken 2,0 mm, 2,5 mm und 3,2 mm. Die Flanschbreite ist einheitlich 90 mm. Die maximale Lieferlänge beträgt 13,5 m.

Profilquerschnitt

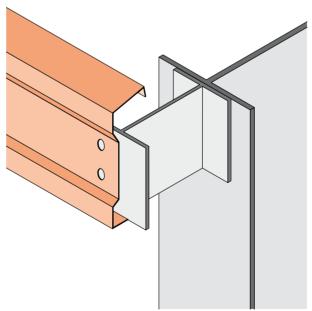


Querschnittswerte

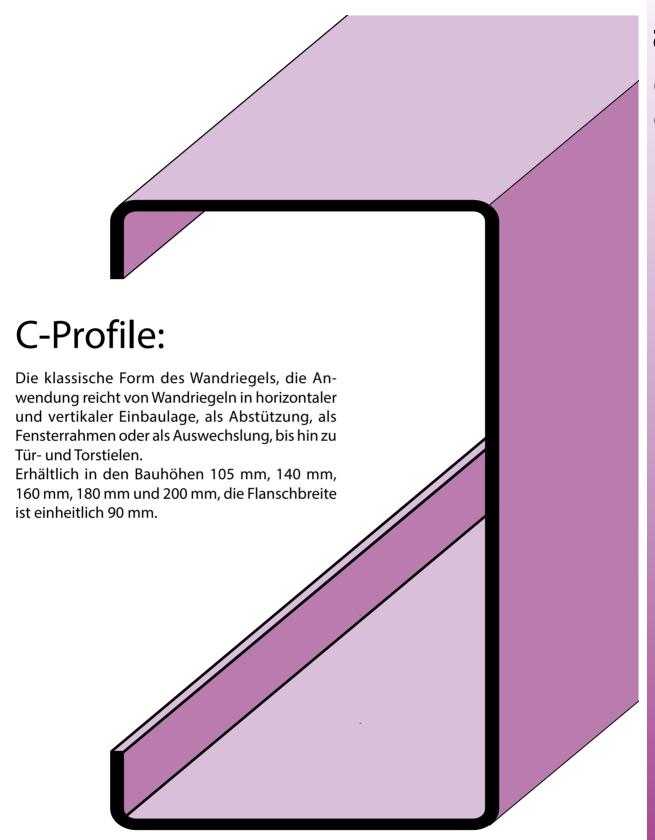
Тур	EB	16020	16025	16032
Höhe	[mm]	160	160	160
Dicke	[mm]	2,0	2,5	3,2
Gewicht	[kg/m]	6,04	7,50	9,50
Α	[cm2]	7,52	9,44	11,98
I,	[cm ⁴]	305,2	378,3	476,6
W,	[cm3]	38,16	47,30	59,59
i,	[mm]	63,71	63,32	63,08
ľ	[cm ⁴]	72,0	88,2	110,2
W	[cm3]	12,55	15,40	19,21
i¸z	[mm]	30,95	30,58	30,33

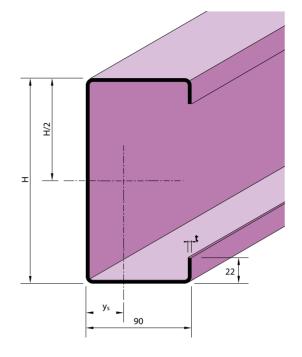

Lochbilder

Die Lochungen werden in ø 18 mm ausgeführt. In den Systemachsen sind zusätzliche Lochungen möglich.



Тур	EB	24020	24025	24032
Höhe	[mm]	240	240	240
Dicke	[mm]	2,0	2,5	3,2
Gewicht	[kg/m]	7,29	9,07	11,51
Α	[cm2]	9,08	11,40	14,50
I,	[cm ⁴]	787,1	979,9	1238,3
W,	[cm3]	65,60	81,68	103,22
i,	[mm]	93,11	92,73	92,42
ľ	[cm ⁴]	74,0	90,0	112,8
Wz	[cm3]	12,43	15,23	19,02
i¸	[mm]	28,55	28,10	27,89


Anordnung als Einfeldträger:


Anordnung an der Stütze

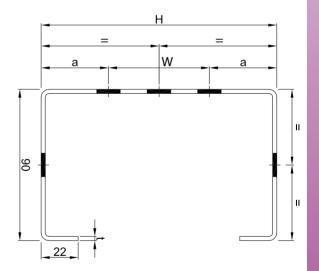
Der Anschluss an der Stütze kann zum Beispiel mit einem kurzen I-Träger erfolgen. Dies ist aber von der konkreten Einbausituation abhängig und richtet sich auch nach ihren statischen Erfordernissen.

Profilquerschnitt

Querschnittswerte

Trem	C 9025 *	C 9032 *	C 10535	C 10532	C 14020	C 14025	C 14030	C 14032
Тур	C 9025 "	C 9032 "	C 10525	C 10552	C 14020	C 14025	C 14030	C 14032
H [mm]	90	90	105	105	140	140	140	140
t [mm]	2,5	3,2	2,5	3,2	2	2,5	3	3,2
A [cm2]	7,48	9,52	7,85	9,99	6,98	8,71	10,42	11,1
G [kg/m]	5,87	7,47	6,16	7,84	5,48	6,84	8,18	8,71
l _v [cm⁴]	108,0	135,4	152,7	191,9	235,7	292,1	346,9	368,5
$W_{v}^{'}$ [cm3]	24	30,1	29,09	36,57	33,68	41,73	49,57	52,65
i _v [cm]	3,8	3,77	4,41	4,38	5,81	5,79	5,77	5,76
l _z [cm ⁴]	85,0	106,4	89,9	112,5	80,8	99,6	117,7	124,7
W _z [cm3]	16,48	20,61	16,84	21,08	14,21	17,52	20,7	21,94
i _z [cm]	3,37	3,34	3,38	3,36	3,4	3,38	3,36	3,35
I _T [cm ⁴]	0,151	0,317	0,158	0,333	0,089	0,176	0,304	0,369
y _s [mm]	38,4	38,4	36,6	36,6	33,1	33,1	33,1	33,1
l _ω [cm ⁶]	1932	2361	2524	3094	3559	4339	5069	5348
Тур	C 16020	C 16025	C 16030	C 16032	C 18025	C 18032		
H [mm]	160	160	160	160	180	180		
H [mm]	160 2	160 2,5	160 3	160 3,2	180 2,5	180 3,2		
H [mm] t [mm] A [cm2]	160 2 7,37	160 2,5 9,2	160 3 11,01	160 3,2 11,73	180 2,5 9,69	180 3,2 12,36		
H [mm] t [mm] A [cm2] G [kg/m]	160 2 7,37 5,79	160 2,5 9,2 7,22	160 3 11,01 8,64	160 3,2 11,73 9,21	180 2,5 9,69 7,61	180 3,2 12,36 9,7		
H [mm] t [mm] A [cm2] G [kg/m] I [cm4]	160 2 7,37 5,79 318,7	160 2,5 9,2 7,22 395,3	160 3 11,01 8,64 470,0	160 3,2 11,73 9,21 499,4	180 2,5 9,69 7,61 517,0	180 3,2 12,36 9,7 653,8		
H [mm] t [mm] A [cm2] G [kg/m] I _y [cm ⁴] W _y [cm3]	160 2 7,37 5,79 318,7 39,85	160 2,5 9,2 7,22 395,3 49,43	160 3 11,01 8,64 470,0 58,77	160 3,2 11,73 9,21 499,4 62,44	180 2,5 9,69 7,61 517,0 57,45	180 3,2 12,36 9,7 653,8 72,66		
H [mm] t [mm] A [cm2] G [kg/m] I _y [cm ⁴] W _y [cm3] i _y [cm]	160 2 7,37 5,79 318,7 39,85 6,58	160 2,5 9,2 7,22 395,3 49,43 6,55	160 3 11,01 8,64 470,0 58,77 6,53	160 3,2 11,73 9,21 499,4 62,44 6,52	180 2,5 9,69 7,61 517,0 57,45 7,3	180 3,2 12,36 9,7 653,8 72,66 7,27		
H [mm] t [mm] A [cm2] G [kg/m] I _y [cm4] W _y [cm3] i _y [cm] I _z [cm4]	160 2 7,37 5,79 318,7 39,85 6,58 84,6	160 2,5 9,2 7,22 395,3 49,43 6,55 104,3	160 3 11,01 8,64 470,0 58,77 6,53 123,3	160 3,2 11,73 9,21 499,4 62,44 6,52 130,7	180 2,5 9,69 7,61 517,0 57,45 7,3 108,6	180 3,2 12,36 9,7 653,8 72,66 7,27 136,0		
H [mm] t [mm] A [cm2] G [kg/m] I _y [cm ⁴] W _y [cm3] i _y [cm] I _z [cm ⁴] W _z [cm3]	160 2 7,37 5,79 318,7 39,85 6,58 84,6 14,45	160 2,5 9,2 7,22 395,3 49,43 6,55 104,3 17,85	160 3 11,01 8,64 470,0 58,77 6,53 123,3 21,06	160 3,2 11,73 9,21 499,4 62,44 6,52 130,7 22,32	180 2,5 9,69 7,61 517,0 57,45 7,3 108,6 18,07	180 3,2 12,36 9,7 653,8 72,66 7,27 136,0 22,64		
H [mm] t [mm] A [cm2] G [kg/m] I _y [cm ⁴] W _y [cm3] i _y [cm] I _z [cm ⁴] W _z [cm3] i _z [cm]	160 2 7,37 5,79 318,7 39,85 6,58 84,6 14,45 3,39	160 2,5 9,2 7,22 395,3 49,43 6,55 104,3 17,85 3,37	160 3 11,01 8,64 470,0 58,77 6,53 123,3 21,06 3,35	160 3,2 11,73 9,21 499,4 62,44 6,52 130,7 22,32 3,34	180 2,5 9,69 7,61 517,0 57,45 7,3 108,6 18,07 3,35	180 3,2 12,36 9,7 653,8 72,66 7,27 136,0 22,64 3,32		
H [mm] t [mm] A [cm2] G [kg/m] I _y [cm ⁴] W _y [cm3] i _y [cm] I _z [cm ⁴] W _z [cm3] i _z [cm] I _z [cm] I _z [cm]	160 2 7,37 5,79 318,7 39,85 6,58 84,6 14,45 3,39 0,094	160 2,5 9,2 7,22 395,3 49,43 6,55 104,3 17,85 3,37 0,186	160 3 11,01 8,64 470,0 58,77 6,53 123,3 21,06 3,35 0,322	160 3,2 11,73 9,21 499,4 62,44 6,52 130,7 22,32 3,34 0,39	180 2,5 9,69 7,61 517,0 57,45 7,3 108,6 18,07	180 3,2 12,36 9,7 653,8 72,66 7,27 136,0 22,64		
H [mm] t [mm] A [cm2] G [kg/m] I _y [cm ⁴] W _y [cm3] i _y [cm] I _z [cm ⁴] W _z [cm3] i _z [cm]	160 2 7,37 5,79 318,7 39,85 6,58 84,6 14,45 3,39	160 2,5 9,2 7,22 395,3 49,43 6,55 104,3 17,85 3,37	160 3 11,01 8,64 470,0 58,77 6,53 123,3 21,06 3,35	160 3,2 11,73 9,21 499,4 62,44 6,52 130,7 22,32 3,34	180 2,5 9,69 7,61 517,0 57,45 7,3 108,6 18,07 3,35 0,196	180 3,2 12,36 9,7 653,8 72,66 7,27 136,0 22,64 3,32 0,412		
H [mm] t [mm] A [cm2] G [kg/m] I _y [cm ⁴] W _y [cm3] i _y [cm] I _z [cm ⁴] W _z [cm3] i _z [cm]	160 2 7,37 5,79 318,7 39,85 6,58 84,6 14,45 3,39 0,094 31,4	160 2,5 9,2 7,22 395,3 49,43 6,55 104,3 17,85 3,37 0,186 31,4	160 3 11,01 8,64 470,0 58,77 6,53 123,3 21,06 3,35 0,322 31,4	160 3,2 11,73 9,21 499,4 62,44 6,52 130,7 22,32 3,34 0,39 31,4	180 2,5 9,69 7,61 517,0 57,45 7,3 108,6 18,07 3,35 0,196 29,9	180 3,2 12,36 9,7 653,8 72,66 7,27 136,0 22,64 3,32 0,412 29,9		
H [mm] t [mm] A [cm2] G [kg/m] I _y [cm ⁴] W _y [cm3] i _y [cm] I _z [cm ⁴] W _z [cm3] i _z [cm]	160 2 7,37 5,79 318,7 39,85 6,58 84,6 14,45 3,39 0,094 31,4	160 2,5 9,2 7,22 395,3 49,43 6,55 104,3 17,85 3,37 0,186 31,4	160 3 11,01 8,64 470,0 58,77 6,53 123,3 21,06 3,35 0,322 31,4	160 3,2 11,73 9,21 499,4 62,44 6,52 130,7 22,32 3,34 0,39 31,4	180 2,5 9,69 7,61 517,0 57,45 7,3 108,6 18,07 3,35 0,196 29,9	180 3,2 12,36 9,7 653,8 72,66 7,27 136,0 22,64 3,32 0,412 29,9		
H [mm] t [mm] A [cm2] G [kg/m] I _y [cm ⁴] W _y [cm3] i _y [cm] I _z [cm ⁴] W _z [cm3] i _z [cm] I _T [cm ⁴] y _s [mm]	160 2 7,37 5,79 318,7 39,85 6,58 84,6 14,45 3,39 0,094 31,4	160 2,5 9,2 7,22 395,3 49,43 6,55 104,3 17,85 3,37 0,186 31,4	160 3 11,01 8,64 470,0 58,77 6,53 123,3 21,06 3,35 0,322 31,4	160 3,2 11,73 9,21 499,4 62,44 6,52 130,7 22,32 3,34 0,39 31,4	180 2,5 9,69 7,61 517,0 57,45 7,3 108,6 18,07 3,35 0,196 29,9	180 3,2 12,36 9,7 653,8 72,66 7,27 136,0 22,64 3,32 0,412 29,9		

^{*} auf Anfrage, längere Vorlaufzeit erforderlich.

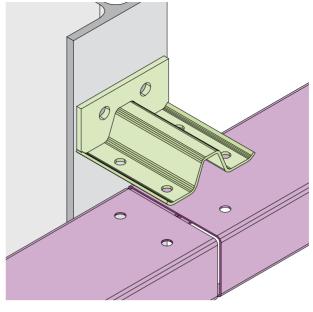

Тур	C 20025	C 20032	C 27025	C 27032
H [mm] t [mm] A [cm2] G [kg/m] I _y [cm ⁴] W _y [cm3] i _y [cm ⁴] W _z [cm3] i _z [cm] I _T [cm ⁴] y _s [mm] I ₀ [cm ⁶]	200	200	270	270
	2,5	3,2	2,5	3,2
	10,18	12,99	11,78	15,06
	7,99	10,2	9,40	11,97
	658,0	833,0	1293,5	1641,1
	65,81	83,31	95,80	121,58
	8,04	8,01	10,48	10,44
	112,4	140,8	121,6	152,8
	18,29	22,92	18,57	23,40
	3,32	3,29	3,21	3,19
	0,205	0,433	0,238	0,501
	28,5	28,5	20,5	20,3
	9027	11186	17178	21463

Lochbilder

Mögliche Lochbilder

Im Steg ist wahlweise eine mittige oder in einer Doppelreihe angeordnete Lochung möglich. Diese kann entlang der Längsachse symmetrisch erfolgen oder nach dem von Ihnen vorgegebenen Lochbild. In den Flanschen kann eine Lochreihe mittig eingebracht werden. Alle Bohrungen sind in ø 18 mm oder ø 14 mm möglich. Die Mindestrandabstände betragen 25 mm. Abweichende Lochbilder oder Locharten sind auf Anfrage möglich. Bitte sprechen Sie mit unserem technischen Büro.

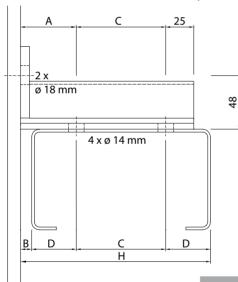
Profil	max. W	min. a	min. W	max. a
C 90	40	25	30	30
C 105	55	25	30	37,5
C 140	90	25	30	55
C 160	110	25	30	65
C 180	130	25	30	75
C 200	150	25	30	85
C 270	220	25	30	120

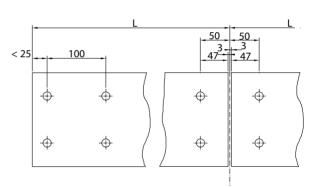

Hinweis:

Die Fertigung der Wandriegel erfolgt auftragsbezogen und nur nach Ihren Stücklisten und Bohrtabellen.

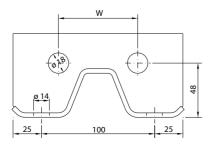
Anschlußwinkel für Wandriegel

Wahlweise sind die Anschlußwinkel für Wandriegel in zwei Ausführungen erhältlich: mit Grundplatte zum Schrauben und ohne Platte zum Aufschweißen. Die Anschlußwinkel mit Grundplatte können verzinkt oder unkonserviert geliefert werden. Anschlußwinkel ohne Grundplatte sind immer unkonserviert. Für die verzinkte Ausführung muss eine Lieferzeit von ca. 3 Wochen berücksichtigt werden.

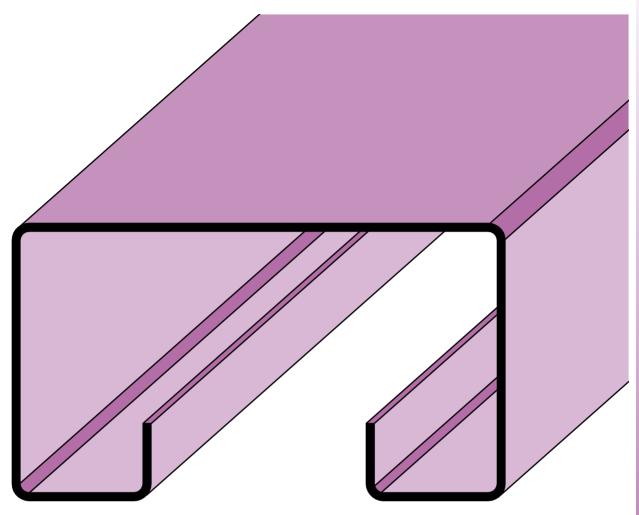

Die Konstruktionsmaße entnehmen Sie der untenstehenden Tabelle.



Konstruktionsmaße für Anschlußwinkel

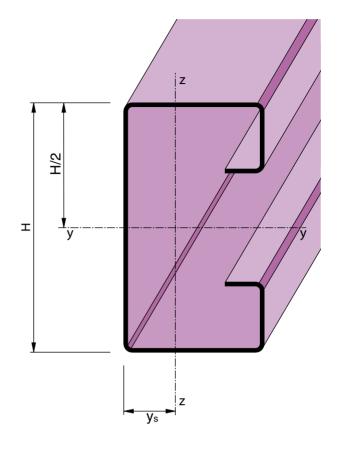

Unten aufgeführt sind die Konstruktionsmaße, welche sich bei der Verwendung der Anschlußwinkel für Wandriegel ergeben. Durch die festgelegten Bohrbilder in den Wandriegeln ergibt sich in der Anwendung eine übersichtliche und einfache Anordnung, die mit wenigen Einzelpositionen auskommt. Eine unkomplizierte Verteilung auf der Baustelle und eine zügige Montage ist somit gewährleistet.

Aus den vom Anschlußwinkel vorgegebenen Bohrungsabstand von 100 mm resultieren entlang der Längsachse zwei Lochbilder, eines für den stumpfen Stoß und eines für den Überstand bei einem Endfeld.



Тур	Halter	Н	Α	В	C	D
		[mm]	[mm]	[mm]	[mm]	[mm]
C 105	Z125	120,5	47,0	15,5	42,0	31,5
C 140	Z140	145,0	54,0	5,0	42,0	49,0
C 160	Z155	162,5	52,0	2,5	61,0	49,5
C 160	Z170	170,0	50,0	10,0	80,0	40,0
C 180	Z185	188,0	58,0	8,0	80,0	50,0
C 200	Z200	205,0	65,0	5.0	80,0	60,0

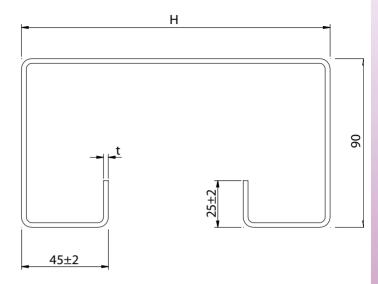
Für den geschraubten Anschluß der Winkel an die Stütze sind in die Grundplatte Bohrungen mit ø 18 mm eingebracht. Das Maß W beträgt im Regelfall 70 mm, abweichende Maße (80 mm, 90 mm und 100 mm oder Langlöcher) sind auf Anfrage erhältlich.



CN-Profile:

Diese Produktreihe unserer Wandriegel erweitert die Anwendung von C-Profilen auch im Bereich um Fenster, Türen und Toren. Zusätzlich zum Steg und den Flanschen, können auch die "kurzen Flansche" gelocht werden. Dadurch kann der Anschluss immer auf der freien Seite erfolgen, so dass keine Schrauben oder Winkel im Einbauraum stören.

Erhältlich sind diese gekanteten Profile in den Bauhöhen 140 mm, 150 mm, 160 mm, 180 mm und 200 mm. Die Flanschbreite beträgt einheitlich 90 mm. Die maximale Lieferlänge ist 12 m. Durch die gleichen Grundabmaße wie die gerollten C-Profile können einfache Kombinationen aus beiden Profilreihen realisiert werden.


Profilquerschnitt

Querschnittswerte

t [mm] 2,0 2,5 3,0 2,0 2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 150 2,5 3,0 2,81 12,96 7,74 10,42 8,3 425,8 7,78 56,79 7,76 5,73 11,3 166,8 2,26 34,53 3,59 218 0,378 8,3 48,3 636 19525

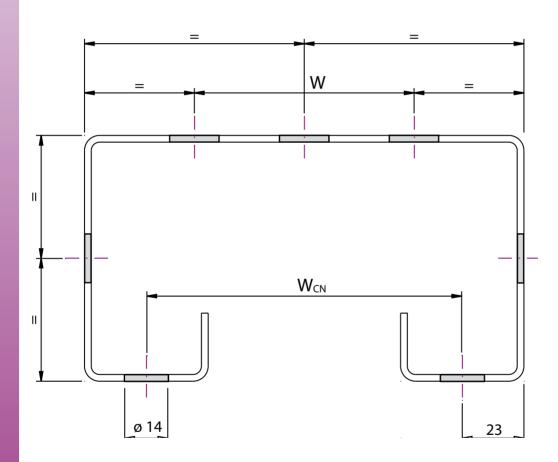
Querschnittsabmessungen

Querschnittswerte

Тур	CN 16020	CN 16025	CN 16030	CN 18025	CN 18030	CN 20025	CN 20030
H [mm] t _N [mm] A [cm2] G [kg/m] l _y [cm4] W _y [cm3] i _y [cm] l _z [cm4] W _z [cm3] i _z [cm] l _T [cm4] y _s [mm] l _ω [cm6]	160	160	160	180	180	200	200
	2,0	2,5	3,0	2,5	3,0	2,5	3,0
	9,04	11,11	13,43	11,65	13,91	12,14	14,44
	7,36	8,96	10,9	9,42	11,18	9,82	11,64
	340,0	419,2	500,2	558,0	663,2	719,5	853,7
	42,51	52,42	62,54	62,02	73,7	71,97	85,38
	6,13	6,14	6,1	6,92	6,91	7,7	7,69
	119,0	145,6	172,4	153,3	180,6	160,1	188,3
	24,44	29,65	35,25	30,25	35,57	30,66	35,91
	3,63	3,62	3,58	3,63	3,6	3,63	3,61
	0,116	0,224	0,392	0,235	0,406	0,245	0,422
	48,7	49,1	48,9	50,7	50,8	52,2	52,4
	15698	18109	21881	21060	24380	24116	27619

Lochbilder

Mögliche Lochbilder

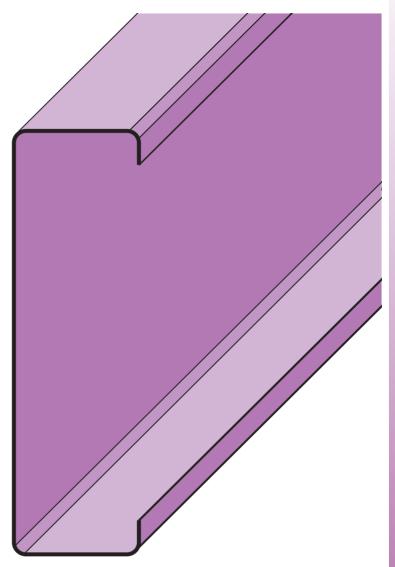

Für die Lochung im Steg stehen zwei Standardlochbilder zur Verfügung. Es kann eine mittige Lochreihe oder eine symmetrisch zur Längsachse angeordnete Doppelreihe eingebracht werden. Die Bohrungen können entweder in ø 14 mm oder in ø 18 mm ausgeführt werden.

In den Flansche kann eine mittige Lochreihe vorgesehen werden. Die Bohrungen können entweder in ø 14 mm oder in ø 18 mm ausgeführt werden.

Für die kurzen Anschlußflansche sind nur Bohrungen mit ø 14 mm möglich.

Der Randabstand für alle Löcher beträgt in Längsrichtung 25 mm.

Abweichende Lochbilder oder Locharten sind auf Anfrage möglich. Bitte sprechen Sie mit unserem technischen Büro.

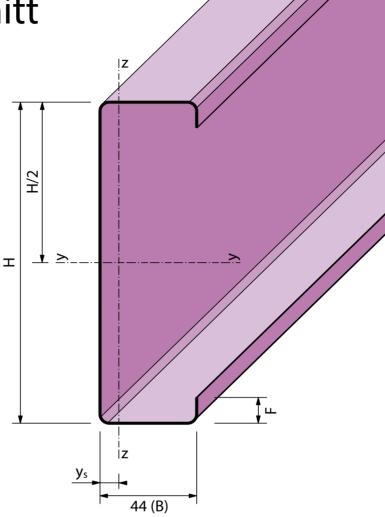


Wurzelmaße für Lochbild im Steg und in den Anschlussflanschen.

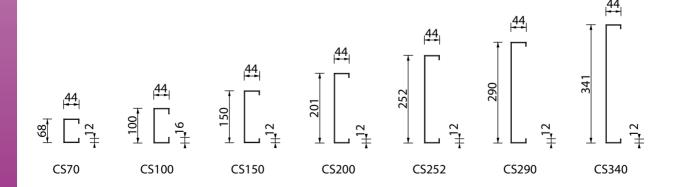
Profil	max W	W_{cn}
CN 140	90	94
CN 150	100	104
CN 160	110	114
CN 180	130	134
CN 200	150	154

Hinweis:

Die Fertigung der Wandriegel erfolgt auftragsbezogen und nur nach Ihren Stücklisten und Bohrtabellen.



CS-Profile:

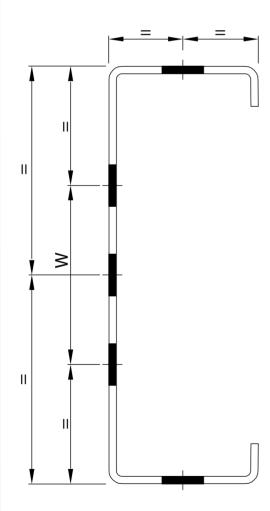

die Produktreihe der CS-Profile ist als Riegel für Einbausituationen mit geringer Belastung oder als konstruktives Bauteil besonders geeignet. Ein Einsatz im Innenbereich, z.B. für Trennwände, Einhausungen ist ebenso möglich wie die Verwendung als Abstandsprofil für spezielle Isolierungen.

Die maximale Lieferlänge beträgt 13,5 m.

Profilquerschnitt

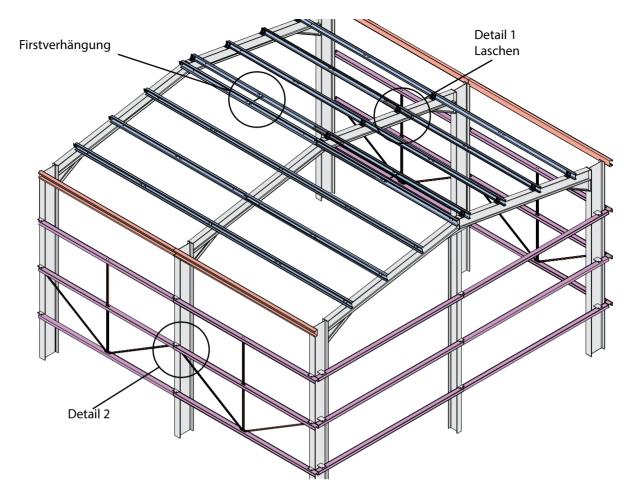
Querschnittsabmessungen

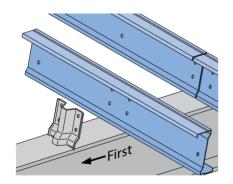
Querschnittswerte					ه			
Typ	C\$7012	C\$7015	C\$7020	C\$10012	•)fil
Typ H [mm] B [mm] F [mm] t [mm] A [cm2] G [kg/m] I _y [cm4] W _y [cm3] i _z [cm] I _z [cm6] I	68 44 12 1,2 1,95 1,53 15,2 4,46 2,787 5,2 1,94 1,651 0,009 16,5 57	68 44 12 1,5 2,44 1,92 18,8 5,53 2,733 6,5 2,38 1,637 0,017 16,5 70	68 44 12 2 3,24 2,54 24,5 7,20 2,75 8,4 3,06 1,614 0,041 16,4 88	100 44 16 1,2 2,41 1,89 37,9 7,59 3,966 6,9 2,38 1,688 0,011 15,1 159	100 44 16 1,5 3,02 2,37 47,2 9,44 3,951 8,5 2,93 1,674 0,021 15,1 194	100 44 16 2 4,02 3,15 61,9 12,39 3,926 10,9 3,78 1,651 0,051 15,1 247		CS - Profile
Тур	CS15012	CS15015	CS15020	CS20012	CS20015	CS20020		
H [mm] B [mm] F [mm] t [mm] A [cm2] G [kg/m] I _y [cm3] i _y [cm] I _z [cmd] W _z [cm3] i _z [cm] I _T [cmd] y _s [cm] I _T [cmd] y _s [cm]	151 44 12 1,2 2,90 2,27 95,0 12,67 5,727 6,9 2,12 1,546 0,013 11,3 301	151 44 12 1,5 3,6 2,9 118,3 15,78 5,71 8,5 2,61 1,532 0,025 11,3 368	151 44 12 2 4,84 3,80 156,0 20,80 5,68 11,0 3,36 1,507 0,061 11,3 469	201 44 12 1,2 3,48 2,73 191,7 19,08 7,42 7,5 2,17 1,466 0,015 9,5 580	201 44 12 1,5 4,37 3,43 239,3 23,82 7,4 9,2 2,67 1,451 0,031 9,5 711	201 44 12 2 5,83 4,58 316,3 31,48 7,366 11,9 3,45 1,427 0,074 9,6 910		
Тур	CS25012	CS25015	CS25020	CS29015	CS29020	CS34020		
H [mm] B [mm] F [mm] t [mm] A [cm2] G [kg/m] I _y [cm3] i _y [cm3] i _y [cm] I _z [cm] I _z [cm] I _T [cmd] y _s [mm] I _m [cm6]	252 44 12 1,2 4,07 3,19 333,7 26,49 9,057 7,9 2,20 1,392 0,018 8,2 969	252 44 12 1,5 5,11 4,01 417,1 33,11 9,035 9,7 2,71 1,377 0,036 8,3 1188	252 44 12 2 6,82 5,36 552,5 43,86 8,998 12,5 3,50 1,353 0,086 8,3 1524	290 44 12 1,5 5,66 4,44 592,2 40,85 10,229 10,0 2,74 1,327 0,04 7,5 1636	290 44 12 2 7,57 5,94 785,4 54,18 10,19 12,8 3,53 1,303 0,096 7,6 2100	341 44 12 2 8,56 6,72 1184,8 69,50 11,766 13,2 3,56 1,243 0,108 6,8 3037		


Lochbilder

Mögliche Lochbilder

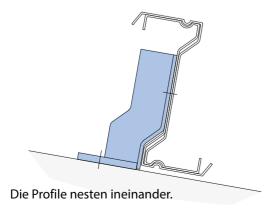
Die Profile CS70 und CS100 können mit einer mittigen Lochreihe in ø 14 mm oder ø 18 mm versehen werden. Ab CS150 stehen für die die Lochung im Steg zwei Standardlochbilder zur Verfügung. Es kann eine mittige Lochreihe oder eine symmetrisch zur Längsachse angeordnete Doppelreihe eingebracht werden. Die Bohrungen können entweder in ø 14 mm oder in ø 18 mm ausgeführt werden. Der Randabstand für alle Größen beträgt mindestens 25 mm in beiden Richtungen.

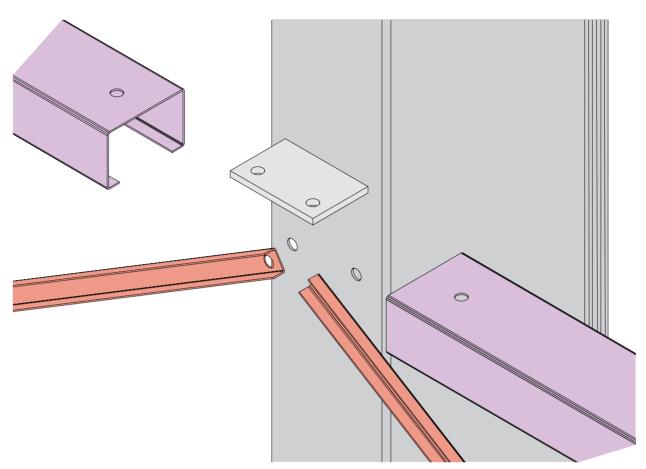

Darüberhinaus können die Profile ab CS100 mit Langlöchern 38x100 mm alle 610 mm als Durchführungen für Installationen versehen werden.


Abweichende Lochbilder oder Locharten sind unter gewissen Bedingungen auf Anfrage möglich. Bitte sprechen Sie mit unserem technischen Büro.

Auf den folgenden Seiten finden Sie einige Konstruktionsdetails des Hallenbaus und Lösungsvorschläge unter Verwendung von Standardbauteilen aus unserem Lieferprogramm.

Standardsituationen Dach und Wand

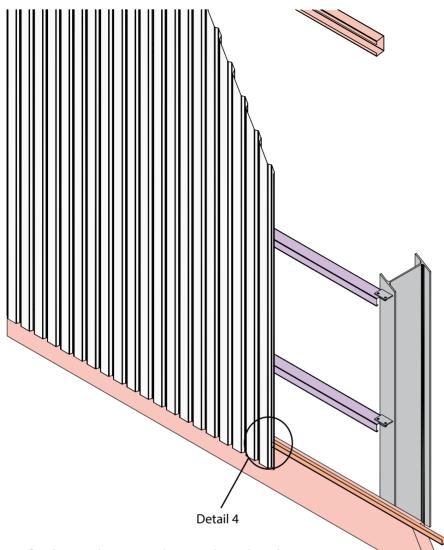



Detail 1 Anbringung der Lasche

Laschen

Beim Zweifeldsystem müssen die versetzt angeordneten Einfeldträger in den Endfeldern mit einem Zweifeldträger verbunden werden. Beim gelaschten Einfeldträgersystem gilt dies für die Endfelder und, versetzt angeordnet, für die ersten Innenfelder. Beim verlaschten Zweifeldsystem wird jeder Stoß mit einer Lasche verbunden.

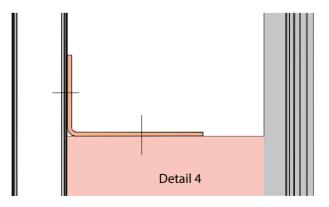
Die Lasche wird, um die Längsachse gestürzt, am Pfettenschuh angeschlagen. In der Lasche liegend kann die Pfette in korrekter Lage verschraubt werden. Durch die Form der Profile können diese gestürzt, also nestend, ineinander liegen.


Detail 2 Anschluß der Diagonalen an der Stütze

Aufnahme des Wandgewichts durch Diagonalen

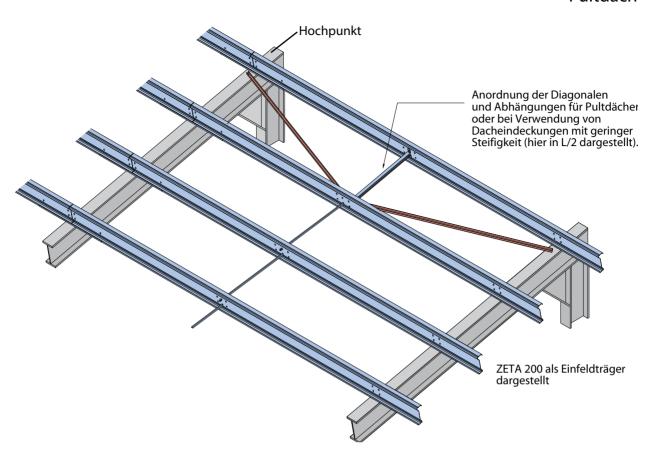
Zur Aufnahme des Wandgewichts bieten sich zwei Lösungsmöglichkeiten an. Das Wandgewicht kann unter Verwendung von Abstützungen (Vertical Struts) und Diagonalen in die Stützen geleitet werden. Der Anschluss der Diagonalen erfolgt an den Wandriegeln zusammen mit den Abstützungen an Bohrungen in L/2 oder L/3 je nach Stützweite. Die Diagonalen werden direkt an der Stütze befestigt.

Sollte eine Aufnahme des Wandgewichtes durch einen vorhandenen Sockel möglich sein, empfehlen wir die auf der nächsten Seite abgebildete Lösung.


Fußwinkel

Aufnahme des Wandgewichts durch Fußwinkel

Wenn am Gebäude ein Sockel vorhanden ist, empfehlen wir, das Wandgewicht durch ein Winkelprofil auf den Sockel abzutragen. Diese Lösung hat einige Vorteile gegenüber der Aufnahme des Wandgewichts mit Diagonalen und Abstützungen,

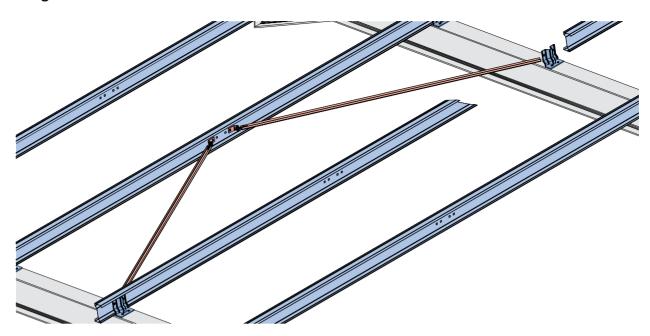

- einfache und schnellere Montage.
- weniger Positionen die zugeordnet werden müssen.

Fußwinkel

L 100 mm x 60 mm x 3,0 mm, verzinkt. Ab Lager lieferbar in Standardlängen von 5 m und 6 m.

Pultdach

Beim Pultdach gilt zu beachten:


Der Dachschub muss über Diagonalen und die Pfettenschuhe in die Rahmenbinder eingeleitet werden. Anders als beim Satteldach kann sich der Dachschub nicht über den First ausgleichen. Bei Dachneigungen größer 5° sind Diagonalen vorzusehen. Diese verhindern, dass

die Pfetten einer zweiachsigen Belastung ausgesetzt werden. Bei nicht freistehenden Dachteilen, also Anschleppungen oder tieferliegenden Vordächern, ist auf die Gefahr der Schneeanhäufung zu achten.

Diagonalen

Die Diagonalen werden außerdem in Fällen erforderlich bei denen der Dachschub nicht über eine Firstkappe und die Firstverhängungen abgetragen werden kann (z.B. ein Firstlichtband). Wird die Dachhaut durch Lichtplatten oder Auswechslungen unterbrochen, so ist es im Einzelfall notwendig, den Dachschub über Diagonalen und ggf. zusätzliche Abhängungen abzuleiten. Die Diagonalen können auch mit Abhängungen und Abstützungen kombiniert werden.

Diagonalen

Ermittlung der Fertigungsmaße:

Maß A:

Berechnung Maß A: A = L/2 oder L/3 - D - E

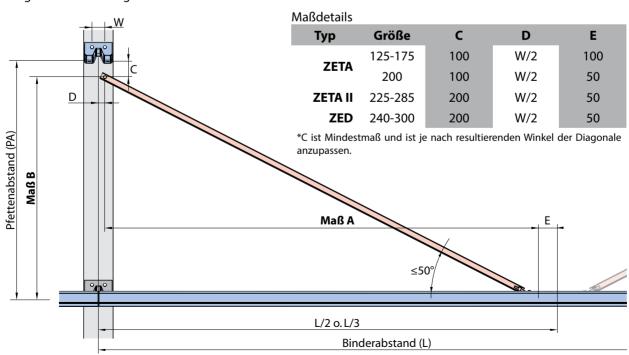
Beispielrechnung für Binderabstand L=6000mm, W=70mm und ZETA 175: L/3=2000 mm, D=W/2=35mm, E=100 mm.

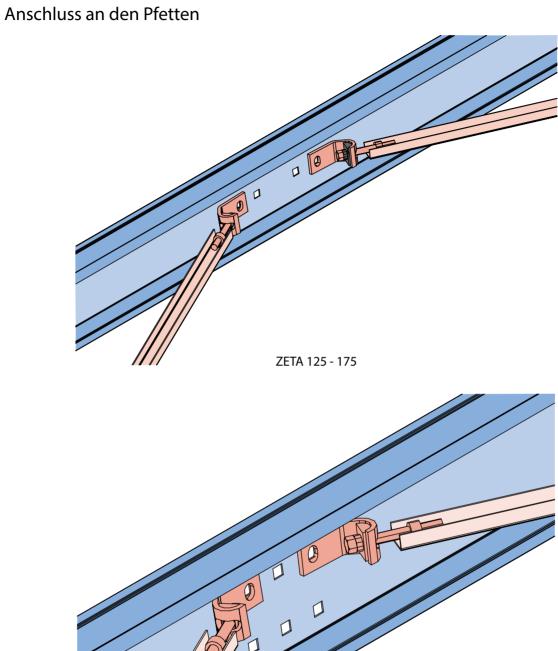
A = 2000 mm - 35 mm - 100 mm

A = 1865 mm

Maß B:

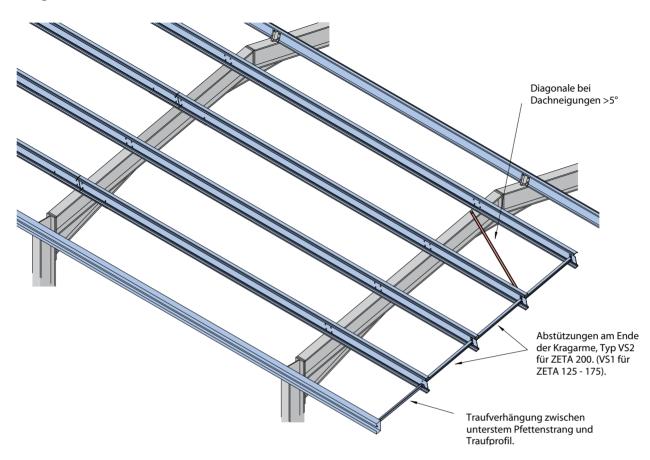
Berechnung Maß B:


B = PA - C

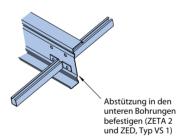

Beispielrechnung für Pfettenabstand PA = 2000mm und ZETA 175: PA = 2500mm, C = 100mm.

B = 2000 mm - 100 mm

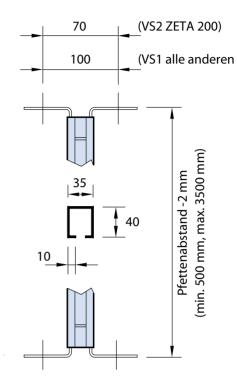
B = 1900 mm


Die maximal mögliche Fertigungslänge für Diagonalen ist 3,5 m. Die größte Auslenkung aus der Pfettenachse ist 50°.

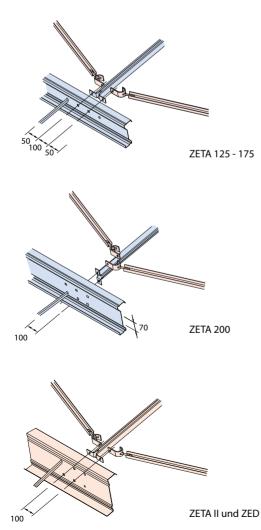
ZETA 200, ZETA II und ZED.

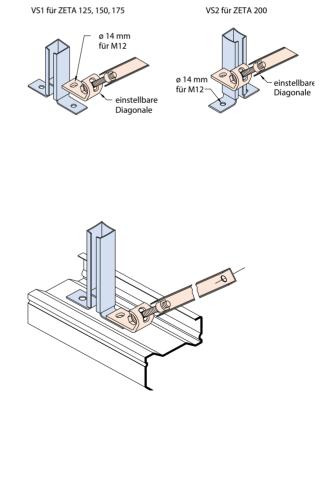

Kragarm

Kragarme


Soll ein giebelseitiges Vordach durch auskragende Pfetten erzeugt werden, müssen folgende Punkte beachtet werden:

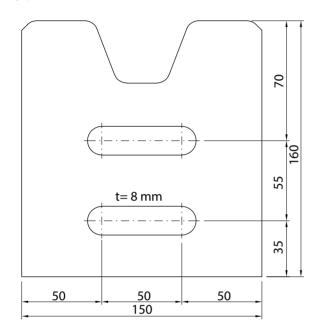
Um ein Wegkippen der Kragarme zu verhindern muss die Auskragung je nach Situation mit Abstützungen oder Abhängungen verhängt werden. Bei Dachneigungen größer als 5° kann zusätzlich eine Diagonale erforderlich werden. Bei hohen Schneelasten oder grossen Auskragungen ist es unter Umständen notwendig, das Profil durch Beilage eines Pfettenabschnitts im Bereich des Giebelbinders, im Querschnitt zu verstärken. Dies ist bei der Planung entsprechend zu berücksichtigen. Bei Fragen und zur Klärung der konkreten Situation wenden Sie sich bitte an unser technisches Büro.

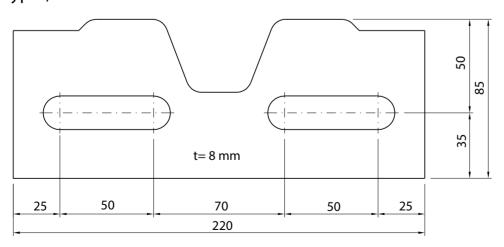



Abstützungen

Sind konstruktiv Abstützungen erforderlich, z. B. bei Auskragungen, Lichtplatten oder besonderen Dachformen, können "Vertical Struts" dafür verwendet werden.

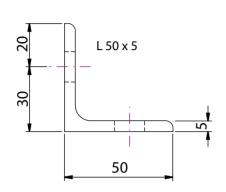
Anordnung der Abstützungen bei den unterschiedlichen Pfettengrößen. Diagonalen nur bei Bedarf.

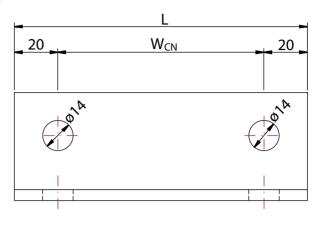



Pfettenschuhe für Beton

Für den Einsatz der ZETA Dachpfetten auf Betonbindern können die Pfettenschuhe mit speziellen Platten versehen werden. Diese Platten sind für alle Pfettenprofile verfügbar. Im Falle eines Einsatzes bitten wir jedoch um etwas größere Vorlaufzeit, da diese Sonderpfettenschuhe auftragsbezogen gefertigt werden.

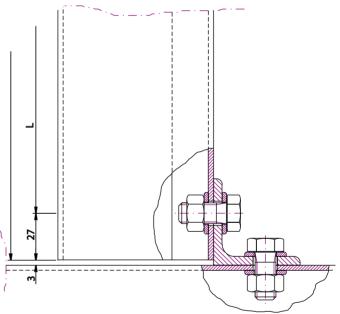
Typ H, für Halfenschienen HTA 52/34

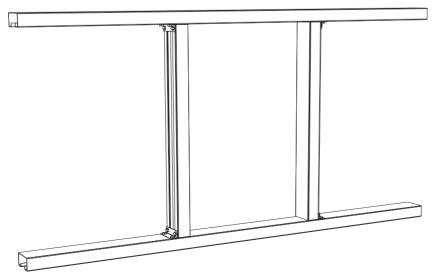

Typ D, zum Dübeln



Konstruktionsbeispiel für Wechsel ohne störende Teile

Anschlusswinkel


Für die Verbindung der Profile untereinander ist ein bauseitiger Anschlusswinkel vorzusehen.



Längen und Wurzelmaße für Anschlusswinkel

Profil	L	Wcn	
CN 140	134	94	
CN 150	144	104	
CN 160	154	114	
CN 180	174	134	
CN 200	194	154	

z.B. Fenstereinbau ohne störende Winkel

System - Bau - Elemente Vertriebs GmbH Offenbachstraße 1 81241 München

Telefon: +49 89 896084 - 0 E - Mail: info@sbe-zeta.de Internet: www.sbe-zeta.de

